Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV Cycle – CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I - IV

UG Guidelines & Syllabus

DEPARTMENT OF PHYSICS

2023-2026 (With effect from the academic year 2024-2025)

> Issued from THE DEANS' OFFICE

Vision

Envisions training students for quality Physics education and holistic development empowered to meet challenges and embark on luxuriant careers.

Mission

- To produce competent graduates infused with professionalism, ethical values and social responsibility.
- > To prepare students to accentuate learning for life.
- > To foster a research environment, to keep up with global development in Science.
- > To evolve strategies for the growth of the department towards excellence.

Graduate Attributes

Graduates of our College develop the following attributes during the course of their studies.

Creative thinking:

Equipping students with hands-on-training through skill-based courses and promote startup.

Personality development:

Coping with increasing pace and change of modern life through value education, awareness on human rights, gender issues and giving counselling for the needful.

> Environmental consciousness and social understanding:

Reflecting upon green initiatives and understanding the responsibility to contribute to the society; promoting social and cultural diversity through student training and service-learning programmes.

Communicative competence:

Offering effective communication skills in both professional and social contexts through bridge courses and activities of clubs and committees.

> Aesthetic skills:

Engaging mind, body and emotions for transformation through fine arts, meditation and exercise; enriching skills through certificate courses offered by Holy Cross Academy.

> Research and knowledge enrichment:

Getting in-depth knowledge in the specific area of study through relevant core papers; ability to create new understanding through the process of critical analysis and problem solving.

Professional ethics:

Valuing honesty, fairness, respect, compassion and professional ethics among students. The students of social work adhere to the *National Association of Social Workers Code of Ethics*

Student engagement in the learning process:

Obtaining extensive and varied opportunities to utilize and build upon the theoretical and empirical knowledge gained through workshops, seminars, conferences, industrial visits and summer internship programmes.

> Employability:

Enhancing students in their professional life through Entrepreneur development, Placement & Career guidance Cell.

Women empowerment and leadership:

Developing the capacity of self-management, team work, leadership and decision making through gender sensitization programmes.

Programme Educational Objectives (PEOs)

PEOs	Upon completion of B.A/B.Sc. degree programme, the graduates	Mission
	will be able to	addressed
PEO1	apply appropriate theory and scientific knowledge to participate in	M1 & M2
	activities that support humanity and economic development nationally	
	and globally, developing as leaders in their fields of expertise.	

POs PO1 PO2 PO3 PO4 PO5 PO6	empowerment and entrepreneurship and societal services. pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards. amme Outcomes (POs) Upon completion of B.Sc. Degree Programme, the graduates will be able to: obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career. communicate effectively and collaborate successfully with peers to	M4 & M M3, M4 M5 & M Mappin with PEO PEO1 PEO2 PEO2 PEO1 & PEO3
Progra POs PO1 PO2 PO3 PO4 PO5 PO6	knowledge and skills with the highest professional and ethical standards. amme Outcomes (POs) Upon completion of B.Sc. Degree Programme, the graduates will be able to: obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	M5 & M Mappin with PEO PEO1 PEO2 PEO2 PEO1 &
POs PO1 PO2 PO3 PO4 PO5 PO6	standards. amme Outcomes (POs) Upon completion of B.Sc. Degree Programme, the graduates will be able to: obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	Mappin with PEO PEO1 PEO2 PEO2 PEO1 &
POs PO1 PO2 PO3 PO4 PO5 PO6	amme Outcomes (POs) Upon completion of B.Sc. Degree Programme, the graduates will be able to: obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	with PEO PEO1 PEO2 PEO2 PEO1 &
POs PO1 PO2 PO3 PO4 PO5 PO6	Upon completion of B.Sc. Degree Programme, the graduates will be able to: obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	with PEO PEO1 PEO2 PEO2 PEO1 8
PO1 PO2 PO3 PO4 PO5 PO6	able to: obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	with PEO PEO1 PEO2 PEO2 PEO1 &
PO2 PO3 PO4 PO5 PO6	the relevant field of science. create innovative ideas to enhance entrepreneurial skills for economic independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO2 PEO2 PEO1 8
PO3 PO4 PO5 PO6	independence. reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO2 PEO1 &
PO3 PO4 PO5 PO6	reflect upon green initiatives and take responsible steps to build a sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO1 8
PO4 PO5 PO6	sustainable environment. enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO1 8
PO5 PO6	face challenging competitive examinations for a better developmental career.	
PO5 PO6	career.	PEO3
PO5 PO6		
PO6	communicate effectively and collaborate successfully with peers to	PEO2 &
	become competent professionals.	PEO3
	absorb ethical, moral and social values in personal and social life leading	PEO2 8
PO7	to highly cultured and civilized personality	PEO3
	participate in learning activities throughout life, through self-paced and	PEO1 &
	self-directed learning to improve knowledge and skills.	PEO3
Progr	amme Specific Outcome (PSOs)	
PSOs	Upon completion of B.Sc. Physics Degree Programme, the graduates	Mappin with PC
	of Physics will be able to:	
	understand the core theories and principles of physics which include	PO1
	mechanics, thermodynamics, electronics, material science etc.	
	develop extensive comprehension of fundamental and diverse	PO2 & PO3
	applications of Physics.	
	apply knowledge of principles, concepts in Physics and analyze their local national and global impact. Apply the aritical reasoning and	PO4 8
	local, national and global impact. Apply the critical reasoning and	PO5
	computing skills to analyze and solve problems in physics.	PO6
	analyze the observed experimental data and relate the results with theoretical expectations. Communicate appropriately and effectively, in	ru0
504	a scientific context using present technology.	
\longrightarrow		DO5 6
	develop entrepreneurial skills, empowered according to the professional	PO5 & PO7
	requirement and become self-dependent. Understand the professional,	P07
	ethical, legal, security, social issues and responsibilities.	
wapp	ing of POs and PSOs POs PSO1 PSO 2 PSO3 PSO4 PSO5	

POs	PSO1	PSO 2	PSO3	PSO4	PSO5
PO1	S	S	S	S	S
PO2	М	S	S	S	S
PO3	М	М	М	S	S
PO4	М	М	S	S	S
PO5	М	М	S	S	S
PO6	М	М	S	S	S
PO7	S	S	S	S	S

Eligibility Norms for Admission Eligibility: 10 + 2 pattern

Those who seek admission to B.Sc. Physics Course must have passed the Higher Secondary Examinations conducted by the Board of Higher Secondary Examinations, Tamil Nadu with Physics and Mathematics subjects or examination recognized and approved by the Syndicate of Manonmaniam Sundaranar University, Tirunelveli.

Duration of the Programme: 3 years

Medium of Instruction: English

Passing Minimum

A minimum of 40% in the external examination and an aggregate of 40% is required. There is no minimum pass mark for the continuous internal assessment. **Components of the B.Sc. Physics Programme**

	Core-Theory Papers	8x100	800
Core	Core Research Project	1x100	100
Course	Core Lab Course	9 x 100	900
	Discipline Specific Elective-	4x 100	400
	Theory Papers		
	Total Marks		2200
	Theory	4x 100	400
Elective	Lab Course	2x 100	200
Course	Total Marks		600
	Total Marks		2800

Part III (Core and Elective)

• Core and Elective Lab Courses carry 100 marks each.

• Practical examination will be conducted at the end of each semester for Core and Elective Courses.

Course Structure

Distribution of Hours and Credits Curricular Courses:

Course	SI	S II	S III	S IV	S V	S VI	Total	
							Η	С
Part-I Language	6 (3)	6 (3)	6 (3)	6 (3)			24	12
Part-II English	6 (3)	6 (3)	6 (3)	6 (3)			24	12
Part-III								
Core Course	5 (5)+	5 (5)+	5 (5)+	5 (5)+	5 (4)+ 5 (4)+	6(5) + 6(5) +	70	62
Core Lab Course Core Research Project	3 (3)	3 (3)	3 (3)	3 (3)	5(4) 5(4)	6(4)		
Elective /Discipline Specific Elective Courses	4 (3)+ 2 (2)	4 (3)+ 2 (2)	4 (3)+ 2 (2)	4 (3)+ 2 (2)	4 (3)+ 4 (3)	5(3)+ 5 (3)	42	32
Part-IV								
Non-major Elective	2 (2)	2 (2)					4	4
Skill Enhancement Course		2 (2)	2(2) + 2(2)	2 (2)			8	8
Foundation Course	2 (2)						2	2

Environmental Studies				2 (2)			2	2
Value Education					2 (2)		2	2
Internship					(2)		-	2
Professional Competency						2 (2)	2	2
Skill Total	30 (23)	30 (23)	30 (23)	30 (24)	30 (26)	30 (22)	180	140
Co-curricular Courses								
Course	SI	S II	SIII	S IV	S V	S VI	Tot	tal
LST (Life Skill Training)	-	(1)	-	(1)			2	
SDT (Certificate Course)	(1)						1	7
Field Project		(1)					1	
Specific Value-added Course	(1)		(1)				2	
Generic Value-added Course				(1)	-	(1)	2	
MOOC		(1)		(1)		× 1	2	
Student Training (ST): Clubs & Committees / NSS				(1)	5		1	
Community Engagement Activity – RUN				(1)	2		1	
Human Rights Education				OY.	(1)		1	
Gender Equity Studies			Å			(1)	1	
Total	· ·		XO	7			14	

Total number of Compulsory Credits = Academic credits + Non-academic credits: 140 + 14 Courses Offered

SEMESTER I

Course	Course Code	Title of the Course	Credits	Hours /Week
Part I	TU231TL1	Language: Tamil	3	6
	FU231FL1 EU241EL1	French English: A Stream		
Part II	EU241EL2 EU241EL3	English: B Stream English: C Stream	3	6
	PU231CC1	Core Course I: Properties of Matter and Acoustics	5	5
D. (III	PU231CP1	Core Lab Course I General Physics Lab I	3	3
Part III	PU231EC1	Elective Course I: Allied Physics for Mathematics – I	3	4
	PU231EP1	Elective Lab Course I: Allied Physics Practical for Mathematics – I	2	2
Part IV	PU231NM1	Non-Major Elective NME I: Physics for Everyday Life	2	2
	PU231FC1	Foundation Course FC: Introductory Physics	2	2
		Total	23	30
		SEMESTER II		
	Course			Hours/

Course	Course Code	Title of the Course	Credits	Hours/ Week
--------	----------------	---------------------	---------	----------------

Part I	TU232TL1 FU232FL1	Language: Tamil French	3	6
Part II	EU242EL1 EU242EL2 EU242EL3	English: A Stream English: B Stream English: C Stream	3	6
	PU232CC1	Core Course II: Heat, Thermodynamics and Statistical Physics	5	5
Part III	PU232CP1	Core Lab Course II: General Physics Lab II	3	3
	PU232EC1	Elective Course II: Allied Physics for Mathematics – II	3	4
	PU232EP1	Elective Lab Course II: Allied Physics Practical for Mathematics – II	2	2
	PU232NM1	Non Major Elective NME II: Physics of Music	2	2
Part IV	PU232SE1	Skill Enhancement Course SEC I: Digital Photography	2	2
		Total	23	30

SEMESTER III

Course	Course Code	Title of the Course	Credits	Hours / Week
Part I	TU233TL1 FU233FL1	Language: Tamil French	3	6
Part II	EU233EL1	English	3	6
	PU233CC1	Core Course III : General Mechanics and Classical Mechanics	5	5
Part III	PU233CP1	Core Lab Course III: General Physics Lab III	3	3
	PU233EC1	Elective Course III: Allied Physics for Chemistry – I	3	4
	PU233EP1	Elective Lab Course III: Allied Physics Practical for Chemistry – I	2	2
Part IV	PU233SE1	Skill Enhancement Course SEC-II: (Indian Knowledge System) Astrophysics	2	2
Part IV	UG23CSE2	Skill Enhancement Course SEC-IV: Digital Fluency	2	2
		Total	23	30

SEMESTER IV

Course	Course Code	Title of the Course	Credits	Hours / Week
Part I	TU234TL1 FU234FL1	Language: Tamil French	3	6
Part II	EU234EL1	English	3	6

	PU234CC1	Core Course IV: Optics and Spectroscopy	5	5
Part III	PU234CP1	Core Lab Course IV: General Physics Lab IV	3	3
	PU234EC1	Elective Course IV: Allied Physics for Chemistry – II	3	4
	PU234EP1	Elective Lab Course IV: Allied Physics Practical for Chemistry – II	2	2
	UG23CSE1	Skill Enhancement Course SEC-III: Fitness for Wellbeing	2	2
	UG234EV1	Environmental Studies (EVS)	2	2
		Total	23	30

SEMESTER V

Course	Course Code	Title of the Course	Credits	Hours/ Week
	PU235CC1	Core Course V: Atomic Physics and Lasers	4	5
	PU235CC2	Core Course VI: Relativity and Quantum Mechanics	4	5
	PU235CP1	Core Lab Course V: General Physics Lab V	2	3
	PU235CP2	Core Lab Course VI: General Physics Lab VI	2	2
	PU235RP1	Core Research Project	4	5
	PU235DE1	Discipline Specific Elective I: a) Energy Physics		
Part III	PU235DE2	Discipline Specific Elective I: b) Mathematical Physics	3	4
	PU235DE3	Discipline Specific Elective I: c) Medical Instrumentation		
	PU235DE4	Discipline Specific Elective II: a) Material Science		
	PU235DE5	Discipline Specific Elective II: b) Numerical Methods and C++ Programming	3	4
	PU235DE6	Discipline Specific Elective II: c) Lasers and Fiber Optics		
	PU235VE1	Value Education	2	2
Part IV	PU235IS1	Internship	2	-
		Total	26	30

SEMESTER VI

		SEMESTER VI		
Course	Course Code	Title of the Course	Credits	Hours/ Week
	PU236CC1	Core Course VII: Nuclear and Particle Physics	5	6
<i>y</i>	PU236CC2	Core Course VIII: Solid State Physics	5	6
	PU236CP1	Core Lab Course VII: General Physics Lab VII	2	2
Part III	PU236CP2	Core Lab Course VIII: General Physics Lab VIII	1	2
	PU236CP3	Core Lab Course IX: General Physics Lab IX	1	2
		Discipline Specific Elective III: a) Nano	3	5

	TOTAL	140	180
	Total	22	30
PU236PS1	Professional Competency Skill	2	2
PU236DE6	Discipline Specific Elective IV: c) Bio Physics		
PU236DE5	Discipline Specific Elective IV: b) Geo Physics	3	5
PU236DE4	Communication Systems	2	5
	Discipline Specific Elective IV: a)		
PU236DE3	Mathematical Physics		
	Discipline Specific Elective III: c) Advanced		
PU230DE2	b) Digital Electronics and Microprocessor 8085		
PU236DE2	Discipline Specific Elective III:		
PU236DE1	Science		

Co-curricular Courses

Part	Semester	Code	Title of the Course	Credit
	I & II	UG232LC1	Life Skill Training I:	1
			Catechism	
		UG232LM1	Life Skill Training I: Moral	
	Ι	UG231C01 –	Skill Development Training	1
			(SDT) - Certificate Course	
	II	PU232FP1	Field Project	1
	I & III	PU231V01 -	Specific Value-added Course	1+1
	II &IV	-	MOOC	1+1
	III & IV	UG234LC1	Life Skill Training II:	1
			Catechism	
		UG234LM1	Life Skill Training II: Moral	
	IV & VI	GVAC2401 -	Generic Value-added Course	1 +1
Part V	I - IV	UG234ST1	Student Training Activity –	1
			Clubs & Committees / NSS	
	IV	UG234CE1	Community Engagement	1
			Activity - RUN	
	V	UG235HR1	Human Rights Education	1
	VI	UG236GS1	Gender Equity Studies	1
		Total		14

Specific Value-added Course

Semester	Course code	Title of the course	Credits	Total hours
I	PU231V01	Photoshop	1	30
I	PU231V02	Basics of Energy Sources	1	30
Ι	PU231V03	Physics of Home Appliances	1	30
III	PU233V01	Fundamentals of MS- Excel	1	30
III	PU233V02	Applications of Laser	1	30
III	PU233V03	Medical Imaging	1	30

Self-Learning Course

Semester	Title of the Course	Course Code
III / V	Public Service Examination: Physics – I	PU234SL1/PU235SL1
IV/ VI	Public Service Examination : Physics – II	PU234SL1/PU236SL1

Examination Pattern

Each paper carries an internal component. There is a passing minimum for external

component. A minimum of 40% in the external examination and an aggregate of 40% is required.

i. Part I – Tamil, Part II – English, Part III - (Core Course/ Elective Course) Ratio of Internal and External= 25:75

Continuous Internal Assessment (CIA)

Internal Components and Distribution of MarksComponentsMarksInternal test (2) - 40 marks10Quiz (2) - 20 marks5Assignment: (Model Making, Exhibition, Role Play, Seminar, Group
Discussion, Problem Solving, Class Test, Open Book Test etc.
(Minimum three items per course should be included in the syllabus &
teaching plan) (30 marks)25

Total

Question Pattern			
Internal Test	Marks	External Exam	Marks
Part A 4 x 1(No choice)	4	Part A 10 x 1 (No choice)	10
Part B 2 x 6 (Internal choice)	12	Part B 5 x 6 (Internal choice)	30
Part C 2 x 12 (Internal choice)	24	Part C 5x 12 (Internal choice)	60
Total	40	Total	100

ii. Lab Course:

Ratio of Internal and External= 25:75

Total: 100 marks

Internal Components and Distribution of Marks

Internal Components	Marks
Performance of the Experiments	10
Regularity in attending practical and submission of records	5
Record	5
Model exam	5
Total	25

Question pattern

External Exam	Marks
Major Practical	
Minor Practical / Spotters /Record	75
Total	75

iii. Core Research Project

Ratio of Internal and External = 25:75

Components	Marks
Internal	25
External	
Core Research Project Report	40
Viva voce	35
Total	100

Part - IV

i. Non-major Elective, Skill Enhancement Course I & II, Foundation Course, Value Education, Professional Competency Skill Ratio of Internal and External = 25: 75

Internal Components and Di	stribution			
Components			Marks	
Internal test $(2) - 25$ marks			10	
Quiz(2) - 20 marks	T 1 11 1.1		5	
Assignment: (Model Making, Activity, etc. (Minimum three		•	10	
Total			25	
Question Pattern				
Internal Test	Marks	External Exam	Marks	
Part A 2 x 2 (No Choice)	4	Part A 5 x 2 (No Choice)	10	
Part B 3 x 4 (Open choice	12	Part B 5 x 4 (Open choice any	20	
Three out of Five)		Five out of Eight)		
Part C 1 x 9 (Open choice	9	Part C 5 x 9 (Open choice any	45	
One out of Three)		Five out of Eight)		
Total	25	Total	75	
ii. Skill Enhancement Course	e III & IV			
Digital Fluency		Ś		
Components		Marks		
Internal				
Quiz (15 x 1)		15		
Lab Assessment (5 x 2)		10		
Total		25		
External				
Practical (2 x 25)		50		
Procedure		25		
Total		75		
Fitness and Wellbeing				
Components		Marks		
Internal				
Quiz (15 x 1)		15		
Exercise (2 x 5)		10		
Total		25		
External				
Written Test: Part A: Open c	choice -5			
of 8 questions (5 x 5)		50		
Part B: Open c	choice -5	out		
of 8 questions (5 x 10)				
Total		75		
iii. Environmental Studies				
Internal Components				
Component		Marks		
Project Report		15		
Viva voce		10		
Total		25		
Question Pattern				
Internal Test	Marks	External Exam	Marks	
Part A 2 x 2 (No Choice)	4	Part A 5 x 2 (No Choice)	10	
	10			
Part B 3 x 4 (Open choice Three out of Five)	12	Part B 5 x 4 (Open choice any Five out of Eight)	20	

Part C 1 x 9 (Open choice	9	Part C 5 x 9 (Open c	noice any	45
One out of Three)	25	Five out of Eight)	,	75
Total	25	Total		15
v. Internship		Ma		
Components			rks	
Industry Contribution			0	
Report & Viva-voce			0	
Total Co-Curricular Courses:		1	00	
Life Skill Training: Cated Equity Studies Internal Components Component	chism &		ts Education الالالة Marks	& Gend
Project - Album on current	issues		25	
Group Activity			25	
Total			50	
External Components		I	S)	
Component			Marks	
Written Test: Open choice -	– 5 out o	of 8 questions (5 x 10)	50	
Total			50	
ii. Skill Development Traini	ing - Ce	rtificate Course:		
Components		Mai	rks	
Attendance & Participation	1	50)	
Skill Test		50)	
Total		10	0	
i. Field Project:				
Components	()	M	arks	
Field Work			50	
Field Project Report & Vi	va-voce		50	
Total		-	100	
v. Specific Value-Added Cou	rses &	Generic Value-Added	Courses:	
Components		M	arks	
Internal			25	
External			75	
Total			100	
• Student Training Activity Compulsory for all I & II ye				
Component			Marks	
Attendance			25	
Participation			75	
Total			100	
i. Community Engagement A	Activity	: Reaching the Unreac	hed Neighbourh	<u>100d (</u> R
Components			Marks	
Attendance & Participation			50	
Field Project			50	
Total			100	

Ratio of Internal and External = 25: 75

Internal Test	Marks	External Exam	Marks
Part A 7 x 1 (No Choice)	7	Part A 15 x 1(No Choice)	15
Part B 3 x 2 (No Choice)	6	Part B 10 x 2 (No Choice)	20
Part C 3 x 4 (No Choice)	12	Part C 10x 4 (No Choice)	40
Total	25	Total	75

Outcome Based Education (OBE)

(i) Knowledge levels for assessment of Outcomes based on Blooms Taxonomy

S.	Level	Parameter	Description
No.			
1	KI	Knowledge/Remembering	It is the ability to remember the previously learned
2	K2	Comprehension/	The learner explains ideas or concepts
		Understanding	
3	K3	Application/Applying	The learner uses information in a new way
4	K4	Analysis/Analysing	The learner distinguishes among different parts
5	K5	Evaluation/Evaluating	The learner justifies a stand or decision
6	K6	Synthesis /Creating	The learner creates a new product or point of view

(ii) Weightage of K – Levels in Question Paper Number of questions for each cognitive level:

Programme	Assessment	Lov	ver (Orde	er Tł	nink	ing		ć	0	Higher order thinking			Total number of
		K1			K 2	K2			K3		K4, K5, K6			questions
	Part	Α	B	С	Α	B	C	A	B	С	Α	B	С	
I UG	Internal	2	1	-	1	1	1	1	-	1	-	-	-	8
	External	5	2	1	3	2	2	2	1	2	-	-	-	20
II UG	Internal	1	1	-	1	1	1	1	-	1	1	-	-	8
	External	5	1	1	4)1	1	-	3	1	1	-	2	20
III UG	Internal	1	-	-	1	-	1	1	1	1	1	1	-	8
	External	5	1	1	4	1	1	-	3	1	1	-	2	20

The levels of assessment are flexible and it should assess the cognitive levels and outcome attainment.

Evaluation

- i. The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade points.
- ii. Evaluation of each course shall be done by Continuous Internal Assessment (CIA) by the course teacher as well as by an end semester examination and will be consolidated at the end of the semester.
- iii. There shall be examinations at the end of each semester, for odd semesters in October/November; for even semesters in April/ May.
- iv. A candidate who does not pass the examination in any course(s) shall be permitted to reappear in such failed course(s) in the subsequent examinations to be held in October/ November or April/May. However, candidates who have arrears in practical examination shall be permitted to reappear for their areas only along with regular practical examinations in the respective semester.
- v. Viva-voce: Each project group shall be required to appear for Viva -voce examination in defence of the project.

vi. The results of all the examinations will be published in the college website.

Conferment of Bachelor's Degree

A candidate shall be eligible for the conferment of the Degree of Bachelor of Arts / Science / Commerce only if the minimum required credits for the programme there of (140 + 18 credits) is earned.

Grading System

For the Semester Examination:

Calculation of Grade Point Average for End Semester Examination:

GPA = <u>Sum of the multiplication of grade points by the credits of the course</u>

Sum of the credits of the courses (passed) in a semester

For the entire programme:

Cumulative Grade Point Average (CGPA) $\Sigma_n \Sigma_i C_{ni} G_{ni} / \Sigma_{ni} \Sigma_i C_{ni}$

CGPA = Sum of the multiplication of grade points by the credits of the entire programmeSum of the credits of the courses of the entire programme

where

C _i - Credits earned for course i in any semest	ster
--	------

- G_i Grade point obtained for course i in any semester
 - semester in which such courses were credited

Final Result

n

Conversion of Marks to Grade Points and Letter Grade

Range of Marks	Grade Points	Letter Grade	Description
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	Α	Good
50-59	5.0-5.9	В	Average
40-49	4.0-4.9	С	Satisfactory
00-39	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Overall Performance

CGPA	Grade	Classification of Final Result
9.5-10.0	O+	First Class Example w*
9.0 and above but below 9.5	0	First Class – Exemplary*
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class with Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	Einst Class
6.5 and above but below 7.0	A+	First Class
6.0 and above but below 6.5	А	
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	Second Class
4.0 and above but below 5.0	С	Third Class
0.0 and above but below 4.0	U	Re-appear

*The candidates who have passed in the first appearance and within the prescribed semester are eligible for the same.

torsion pendulum.	
Pre-requisites: Basic knowledge on Power, Force, Newton's Laws of Motion Learning Objectives: 1. To Study the properties of matter leads to information which is of practical v to the physicists. 2. To provide an information about the internal forces which act between constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	1
Basic knowledge on Power, Force, Newton's Laws of Motion Learning Objectives: 1. To Study the properties of matter leads to information which is of practical vertex to the physicists. 2. To provide an information about the internal forces which act between constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
Learning Objectives: 1. To Study the properties of matter leads to information which is of practical vertex to the physicists. 2. To provide an information about the internal forces which act between constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
1. To Study the properties of matter leads to information which is of practical vertex to the physicists. 2. To provide an information about the internal forces which act between constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
to the physicists. 2. To provide an information about the internal forces which act between constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
2. To provide an information about the internal forces which act between constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	alue
constituent parts of the substance. Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
Course Outcomes Course Outcomes On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	the
On the successful completion of the course, student will be able to: 1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
1 relate elastic behaviour in terms of three modulii of elasticity and working of torsion pendulum.	
torsion pendulum.	
1	K1 &
2 appreciate concept of bending of beams and analyze the expression, quantify and	K2
	K2 &
	K3
	K2 &
phenomena associated with liquid surface, soap films provide an analogue	K3
solution to many engineering problems.	
	K1 &
understand the concept of resonance and use it to evaluate the frequency of	K3
vibration. Set up experiment to evaluate frequency of ac mains.	
	K2 &
	K3
in medical field and assimilate different methods of production of ultrasonic	
waves.	

SEMESTER I CORE COURSE I: PROPERTIES OF MATTER AND ACOUSTICS

	K1 - Remember; K2 - Understand; K3 - Apply	
Units	Contents	No. of Hours
Ι	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants – Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)	15
П	BENDING OF BEAMS: Cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope	15
ш	FLUID DYNAMICS: Surface tension: definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity: definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature	15

IV	WAVES AND OSCILLATIONS: Simple Harmonic Motion	15
	(SHM) – differential equation of SHM – graphical representation of SHM	
	– composition of two SHM in a straight line and at right angles –	
	Lissajous's figures- free, damped, forced vibrations – resonance and	
	Sharpness of resonance.	
	Laws of transverse vibration in strings -sonometer - determination of AC	
	frequency using sonometer -determination of frequency using	
	Melde's string apparatus	
V	ACOUSTICS OF BUILDINGS AND ULTRASONICS:	15
	Intensity of sound – decibel – loudness of sound –reverberation – Sabine's	
	reverberation formula (derivation) – acoustic intensity – factors affecting the acoustics of buildings.	
	Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal	
	method – magnetostriction effect – application of ultrasonic waves	
	Total	75

Self- study | Elastic constants; Oscillations of a cantilever;

Molecular forces; Lissajous's figures; Properties of ultrasonic waves

Textbooks

- 1. Mathur, D, S. 2010. Elements of Properties of Matter, S.Chand& Co.
- 2. BrijLal, Subrahmanyam, N. 2003. Properties of Matter, S. Chand & Co
- 3. Khanna, D.R. Bedi, R.S. 1969. Textbook of Sound, Atma Ram & Sons
- 4. BrijLal and Subrahmanyam, N. 1995. A Text Book of Sound, Second revised edition, Vikas Publishing House.
- 5. Murugesan, R. 2012. Properties of Matter, S. Chand & Co.

Reference Books

- 1. Smith, C.J. 1960. General Properties of Matter, Orient Longman Publishers
- 2. Gulati, H.R. 1977. Fundamental of General Properties of Matter (Fifth edition), R. Chand & Co.
- 3. French, A.P. 1973. Vibration and Waves, MIT Introductory Physics, Arnold Herrmann India.

Web Resources

- 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-theywork
- https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
 http://www.sound-physics.com/
- 4. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-theywork
- 5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/6. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3	2	2	3	2	2	1	1
CO2	2	3	3	3	2	2	3	3	3	2	1	1
CO3	3	2	3	2	3	3	2	3	2	2	1	1
CO4	3	3	3	3	3	2	3	3	2	3	2	1
CO5	2	2	3	3	2	3	3	3	2	2	3	2
TOTAL	13	13	14	15	13	12	13	15	11	11	8	6
AVERAGE	2.6	2.6	2.8	3	2.6	2.4	2.6	3	2.2	2.2	1.8	1.6

3 – Strong, 2- Medium, 1- Low

	C	OK	E LAI	R CO	JURSE I: G	ENERA	L PHYS	ICS L	AR I	
Course	L	Т	Р	S	Credits	Inst.	Total		Marks	
Code						Hours	Hours	CIA	External	Total
PU231CP1	-	-	3	-	3	3	45	25	75	100
Pre requisite:	:									
Knowledge or	n basi	c Phy	ysics a	and A	Arithmetics					

SEMESTER I <u>CORE LAB COURSE I: GENERAL PHYSICS LAB</u>

Learning Objectives:

- 1. To apply various physics concepts to understand Properties of Matter, set up experimentation to verify theories.
- 2. To do error analysis and correlate results

Course Outcomes

On the su	uccessful completion of the course, students will able to:	
1.	understand the strength of material using Young's modulus.	K2
2.	acquire knowledge of thermal behaviour of the materials.	K1
3.	analyze the physical principle involved in the various instruments	K4
4.	understand the scientific method and an ability to apply the scientific method in practice.	K2
	K1 Domomber: K2 Understand: K4 Analyza:	

K1 - Remember; K2 - Understand; K4 - Analyze;

Contents

(Any Eight Experiments)

- 1. Determination of Young's modulus by uniform bending load depression graph.
- 2. Determination of Young's modulus by non-uniform bending scale & telescope.
- 3. Determination of rigidity modulus without mass using Torsional pendulum.
- 4. Determination of rigidity modulus with masses using Torsional pendulum.
- 5. Determination of surface tension & interfacial surface tension by drop weight method.
- 6. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 7. Determination of coefficient of viscosity by Variable Pressure Head Burette method.
- 8. Comparison of coefficient of viscosity of two liquids by Burette method.
- 9. Determination of moment of inertia of an irregular body.
- 10. Verification of parallel axes theorem on moment of inertia.
- 11. Verification of perpendicular axes theorem on moment of inertia.
- 12. Determination of Young's modulus by stretching of wire with known masses.
- 13. Verification of Hook's law by stretching of wire method.

14. Determination of Young's modulus by cantilever – load depression graph.

- 15. Determination of Young's modulus by cantilever oscillation method
- 16. Determination of rigidity modulus by static torsion.
- 17. Determination of Y, n and K by Searle's double bar method.
- 18. Determination of surface tension of liquid by Capillary rise method.
- 19. Determination of critical pressure for streamline flow.
- 20. Determination of Poisson's ratio of rubber tube.
- 21. Determination of radius of capillary tube by mercury pellet method.

Reference Books

- 1. Manual prepared by the department
- 2. Ouseph, C, C., Rao, U, J. and Vijayendran, V. 2007. Practical Physics and Electronics. S. Viswanathan, Pvt., Ltd. Chennai.

Corr			IVEC			ALLIED			MATHEM 		1	
Cou Co		L	Т	Р	S	Credits	Inst.	Total	CIA	Marks	Tatal	
PU23		4				3	Hours 4	Hours 60	CIA 25	External 75	Total	
		-	-	-	-	3	4	00	25	15	100	
	equisite		haria	Dhusic								
	nowledg	-		Physic	:8							
	ing Ob	•		minain	as of	Dhusios						
		-	-	-		Physics hysics in c	lav to da	u lifa				
۷.	10 mc	orpo		ncepts	OI P	•	se Outco	•				
On the	6110006	aful .	oomnl	otion o	ftho	course, s			la ta:			
			-								K1 &	
	-		0			•	of waves	, propert	ies of matte	er,	KI & K2	
		city and magnetism, electronics the concepts of ultrasonics, surface tension and study their										
							ace tensio	on and st	udy their		K3	
	applica							1 . • •.		1	17.0	
`	1					using con	cepts of e	electricity	, magnetisi	n, and	K2	
			0			(DI '	• 1 •	1 1.0			K3	
4	apply t	nics in Digital India. heir depth knowledge of Physics in day today life.										
5	develop	lop their knowledge to carry out the practical by applying these concepts										
5	of Phys	sics					1	\sim				
K 1	l - Rem	emb	er; K2	- Und	erstar	nd; K3 - A	pply					
Unit						Conte	ents			l	No. of	
]	Hours	
	Wav	es, C) scillat	tions a	nd U	ltrasonics						
	Simp	le ha	armoni	ic mot	ion (SHM) – d	compositi	on of tw	o SHMs a	t right		
	angle	s (p	eriods	in the	ratio	o 1:1) – I	Lissajous	figures	– uses – la	aws of		
	trans	verse	e vibra	tions of	of str	ings – det	erminatio	on of AC	frequency	using		
Ι	sonor	nete	r (ste	el and	l bra	ass wires) – ultı	asound	- product	tion – 1	12	
									medical f			
	lithot	ripsy	, ultra	sonogr	aphy	- ultrasor	noic magi	ng- ultra	sonics in de	entistry		
	– phy	ysiot	heraph	y, optl	nalmo	ology – ad	lvantages	of noni	nvasive sur	gery –		
	ultras	sonic	s in gr	een ch	emist	ry.						
II	Pro	pert	ies of I	Matte	•					1	12	
			-				-		ry of non-ι			
	ben	ding	– dete	rminat	ion o	f Young's	modulus	by non-	uniform be	nding –		
L	ener	rgy s	stored	in a sti	etche	ed wire –	torsion of	f a wire -	– determina	ation of		
	rigi	dity 1	modul	us by t	orsio	nal pendul	um					
	Vise	cosit	y: stre	eamlin	e an	d turbule	nt motio	n – cri	tical veloc	ity –		
	coet	fficie	ent of	visco	sity	- Poiseu	ille's for	mula –	compariso	on of		
	visc	ositi	es – bi	urette r	nethc	od,						
									oplets form			
/	shape	e, siz	e and I	lifetim	e – C	OVID trai	nsmissior	n through	droplets, s	aliva –		
	drop			hod –	interf	facial surfa	<u>ice tensio</u>	n				
	-	weig	ght met	hod – modyn			ace tensio	<u>n.</u>		1	12	
	Heat	weig and	tht met Theri	modyn	amic	S			iment – the		12	
III	Heat Joule	weig and -Kel	tht met Theri vin eff	modyn Tect – J	amic oule-	:s Thomson	porous pl	ug exper	iment – the Linde's pro	ory	12	
III	Heat Joule – tem	weig and -Kel	tht met Ther vin eff ture of	modyn fect – J f inver	amic oule- sion	es Thomson – liquefac	porous pl tion of O	ug exper xygen– I		cory cess of	12	

SEMESTER I ELECTIVE COURSE I: ALLIED PHYSICS FOR MATHEMATICS – I e Image: Colspan="2">Image: Colspan="2" e Image: Colspan="2">Image: Colspan="2" e Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"

	logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem –	12
	Digital Electronics and Digital Indialogic gates, OR, AND, NOT, NAND, NOR , EXOR logic gates -	12
IV	current values in an AC circuit – types of switches in household and factories– Smart wifi switches- fuses and circuit breakers in houses	
	Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and	
	Potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-	
	Electricity and Magnetism	12

Self-Study	Application of ultrasonics; Streamline and turbulent motion; Reversible and
	irreversible process; Types of switches;
	Logic gates-Universal building blocks

Textbooks

- 1. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.
- 2. Murugesan, R. 2001. Allied Physics. S. Chand & Co. New Delhi.

Reference Books

- 1. Brijlal and Subramaniam, N. 1994. Properties of Matter. S. Chand & Co. New Delhi.
- 2. Murugesan, R. 2017. Electricity and Magnetism. S. Chand & Co. New Delhi.
- 3. Ubald Raj, A. and Jose Robin, G. 2004. Basic Electronics. Indira Publications. Marthandam.

Web Resources

- 1. https://youtu.be/M_5KYncYNyc
- 2. https://www.youtube.com/watch?v=9mXOMzUruMQ&t=1s
- 3. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
- 4. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/
- 6. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO3	PSO4	PSO5
CO1	3	3	1	1	1	1	2	3	2	2	3	1
CO2	3	3	3	1	2	2	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	2	2	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13
AVERAGE	3	3	2.8	2	2.2	2.2	2.4	3	2.8	2.8	2.8	2.6

SEMESTER I ELECTIVE LAB COURSE I: ALLIED PHYSICS PRACTICAL FOR MATHEMATICS – I

Course	т	т	D	G	Creadita	Inst.	Total		Marks		
Code	L	I	P	3	Credits	Hours	Hours	CIA	External	Total	
PU231EP1	-	-	2	-	2	2	30	25	75	100	

Pre-requisite:

Knowledge in basic Physics

Learning Objectives:

- 1. To make the students more innovative, in hands on experiments.
- 2. To elucidate theory through simple experiments in physics.

-	2. To enderdate theory through simple experiments in physics.	
	Course Outcomes	
On t	he successful completion of the course, student will be able to:	
1	understand the basic principles of Physics through experiments.	K2
2	measure and determine the various physical parameters.	K3
3	develop an idea about the handling of various instruments.	K2
4	get an idea about basic Scientific knowledge and implications of its broad working principle	K2 & K3
5	analyze, interpreting and evaluate data.	K3 & K4
K1	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	6 – Create

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by torsional oscillations without mass
- 4. Determination of AC frequency using sonometer
- 5. Surface tension and interfacial Surface tension drop weight method
- 6. Comparison of viscosities of two liquids burette method
- 7. Determination of co-efficient of viscosity-Variable pressure head
- 8. Calibration of low range voltmeter using potentiometer
- 9. Determination of thermo emf using potentiometer
- 10. Verification of truth tables of basic logic gates using ICs
- 11. Verification of De Morgan's theorems using logic gate ICs.
- 12. Use of NAND as universal building block.
- 13. Rigidity modulus by static torsion method.
- 14. Verification of laws of transverse vibrations using sonometer

Note: Use of digital balance is permitted

Reference Books

- 1. Manual prepared by the department
- 2. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.

SEMESTER I

	11110					1.111101	JDION				
Course Code	т	т	р	G	Credits	Inst.	Total	Marks			
	L	1	P	3		Hours	Hours	CIA	External	Total	
PU231NM1	2	-	-	-	2	2	30	25	75	100	

NON-MAJOR ELECTIVE NME I: PHYSICS FOR EVERYDAY LIFE

Pre-requisite:

Students should know about basic knowledge regarding mechanical objects, laser, optical devices and solar energy.

Learning Objectives:

- 1. To introduce fundamental physics concepts and their applications in everyday life.
- 2. To comprehend where all physics principles have been applied in everyday life and to appreciate the concepts with a greater understanding, as well as to learn about Indian scientists who have made significant contributions to Physics.

Course Outcomes

On the	On the successful completion of the course, student will be able to:								
1.	understand the knowledge of basic scientific principles and fundamental	K2							
	concepts in motion of bodies.								
2.	understand the basic laws of physics in domestic appliances	K2							
3.	recall the physics notions applied in various optical instruments	K1							
4.	comprehend the utilization of solar energy in everyday life activities	K2							
5.	know about the various physicists contribution towards science and	K2							
	technology								

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents	No. of
		Hours
Ι	MECHANICAL OBJECTS Spring scales – bouncing balls –roller coasters – bicycles –rockets and space travel.	6
II	OPTICAL INSTRUMENTS AND LASER Vision corrective lenses – polaroid glasses – UV protective glass – polaroid camera – colour photography – holography and laser.	6
III	PHYSICS OF HOME APPLIANCESBulb – fan – hair drier – television – air conditioners – microwave ovens – vacuum cleaners	6
IV	SOLAR ENERGY Solar constant – General applications of solar energy – Solar water heaters – Solar Photo – voltaic cells – General applications of solar cells.	6
v	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS C.V.Raman, Homi Jehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to science and technology.	6
J	TOTAL	30

Self -Study Brief description about bulb, fan, Applications of solar energy

Textbooks

- 1. The Physics in our Daily Lives, Umme Ammara, Gugucool Publishing, Hyderabad, 2019.
- 2. For the love of physics, Walter Lawin, Free Press, New York, 2011.

Reference Books

1. Gerardin Jayam. (2019). Physics in Everyday Life. Published by the Department of Physics, Holy Cross College (Autonomous), Nagercoil.

Web Resources

- 1. https://www.scientificworldinfo.com/2021/09/importance-of-physics-in-our-daily-life.html
- 2. https://www.britannica.com/technology/laser

MAPPING WITH PROGRAMME OUTCOMESAND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	1	2	2	3	2	2	2	2
CO2	3	3	2	1	1	2	2	3	3	3	2	2
CO3	3	2	2	1	2	2	2	3	3	3	3	3
CO4	3	3	3	1	1	3	3	3	3	2	2	2
CO5	2	1	1	3	2	2	2	2	2	2	2	2
TOTAL	14	12	10	7	7	11	11	14	13	12	11	11
AVERAGE	2.8	2.4	2	1.4	1.4	2.2	2.2	2.8	2.6	2.4	2.2	2.2

SEMESTER I FOUNDATION COURSE: INTRODUCTORY PHYSICS

Course Code	т	Т	Р	G	Credits	Inst. Hours	Total		Marks	
Course Code	L	1		S	Creans	Inst. Hours	Hours	CIA	External	Total
PU231FC1	2	-	-	-	2	2	30	25	75	100

Pre-requisite:

2.

Students should know the fundamentals of Physics.

Learning Objectives:

- 1. To help students get an overview of Physics before learning their core courses.
 - To serve as a bridge between the school curriculum and the degree programme.

	Course Outcomes						
On the	On the successful completion of the course, student will be able to:						
1.	apply concept of vectors to understand concepts of Physics and solve problems	K2 & K3					
2.	interpret different forces present in Nature while learning about phenomena related to these different forces.	K1 & K2					
3.	describe energy in different process and relate momentum, velocity and energy	K1 & K2					
4.	differentiate different types of motions they would encounter in various courses and understand their basis	K1 & K2					
5.	relate various properties of matter with their behavior and connect them with different physical parameters involved.	K2 & K3					
	V1 Demonstram V2 Undemotional V2 Assolution						

K1 - Remember; **K2** - Understand; **K3** - Apply

Units	Contents	No. of Hours
I	Vector: Vectors, scalars, Examples for scalars and vectors from physical quantities, addition, subtraction of vectors, resolution and resultant of vectors, units and dimensions, standard physics constants	6
п	Force: Different types of forces, gravitational, electrostatic, magnetic, electromagnetic, nuclear, mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces	6
ш	Energy: Different forms of energy, Conservation laws of momentum, energy, types of collisions, angular momentum, alternate energy sources, real life examples	6
IV	Motion: Types of motion, linear, projectile, circular, angular, simple harmonic motions, satellite motion, banking of a curved road, stream line and turbulent motions, wave motion, comparison of light and sound waves, Free, forced and damped oscillations	6
v	Surface tension and Viscosity: Surface tension, shape of liquid drop – angle of contact – viscosity – lubricants, capillary flow, diffusion, real life examples, properties and types of materials in daily use, conductors, insulators, thermal and electric	6
	TOTAL	30

Self-study	Units and dimensions; Friction; Comparison of light and sound waves;
	Stream line and turbulent motions; Conductors

Textbooks

- 1. Mathur D.S. 2010, Elements of Properties of Matter, S.Chand & Co
- 2. BrijLal& N. Subrahmanyam. 2003, Properties of Matter, S.Chand & Co.

Reference Books

1.Gulati H.R, 1977, Fundamental of General Properties of Matter (Fifth edition), S.Chand& Co.

Web Resources

- 1. https://www.physicsclassroom.com/class/newtlaws/Lesson-2/Types-of-Forces
- 2. http://hyperphysics.phyastr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/
- 3. https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/
- 4. https://testbook.com/physics/types-of-motion
- 5. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Tex tbook

_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_ Propert ies_of_Matter/States_of_Matter/Properties_of_Liquids/Surface_Tension

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO4
CO1	3	3	3	3	2	3	3	2.5	2.5	3	3	3
CO2	3	3	3	3	3	2	2	2.5	2.5	2	3	3
CO3	3	3	3	3	3	2	2	2.5	2.5	2	3	3
CO4	3	3	3	3	2	2	2	2.5	2.5	2	3	3
CO5	3	3	3	3	3	2	2	2.5	2.5	2	3	3
TOTAL	15	15	15	15	13	11	11	12.5	12.5	11	15	15
AVERAGE	3	3	3	3	2.6	2.2	2.2	2.5	2.5	2.2	3	3

SEMESTER I SPECIFIC VALUE-ADDED COURSE: PHOTOSHOP

Course Code	т	T	р	ç	Credita	Inst Hound	Total		Marks					
Course Code	L	I	I	1	I	r	r	э	5 Creans	Inst. nours	Hours	CIA	External	Total
PU231V01	2	-	I	-	1	2	30	25	75	100				

Pre-requisite:

Basic knowledge on photoshop.

Learning Objectives:

- 1. Students will be able to create images for web design, logos, graphics, layouts, image touch-ups, and colour enhancement.
- 2.Students will be able to learn the principles of how different types of media can be processed and presented by computers.

Course Outcomes

On the successful completion of the course, student will be able to:							
1	use photoshop confidently and effectively.	K3					
2	gain the skills and abilities to use photoshop that make them employable	K6					
3	create and edit images	K6					
4	use a range of tools and filters in <i>photoshop</i>	K3					
	K3–Apply; K6-Create						

Units	Contents	No. of Hours
Ι	PHOTOSHOP Introduction - Features of Photoshop - Key Board practice – Creation of new file - saving document - Inserting of Images	6
п	GRAPHICS Creating Graphics: Combining Photos, Text, & Graphics - Replacing Backgrounds - Colour Correction Using Colour Balance - Colour Correction Using Curves - Preparing Digital Photos for Print - Exporting Files	6
III	SMART FILTERS Sharpening Photos - Layer Masking - Masking Smart Filters - Converting to Black & White - Adjustment Layers & Mask - Retouching	6
IV	MASKS Changing Colour with a Blending Mode - Clipping Masks: Filling Shapes with Images - Using Adjustment Layers as Clipping Masks - Camera Raw Fundamentals	6
v	PHOTOSHOP FOR DESIGN Camera Raw Fundamentals - Photoshop for Design: Adding a Title & Layer Styles - Photoshop for Design: Creating Digital Art in Photoshop - Photoshop for Design: Compositing into a Photo	6
	TOTAL	30

Reference Books

1. Rafael Concepcion, Adobe Photoshop and Lightroom Classic Classroom in a Book 3rd Edition, Kindle Edition, Adobe Press, 2022

2. Tay Vaughan, "Multimedia making it work", Tata McGraw-Hill, 2021.

3. Li & Drew, "Fundamentals of Multimedia", Pearson Education, 2019.

4. Robin Nichols, "Mastering Adobe Photoshop Elements 2023", Fifth Edition, Packet Publisher, Dec 2022.

	1		NOG	NAN		LCI			VILS			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2
											· · · · · · · · · · · · · · · · · · ·	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER I

SPECIFIC VALUE-ADDED COURSE: BASICS OF ENERGY SOURCES

Course Code	т	т	Р	C	Credita	Inst. Hours	Total		Marks	
Course Code	L	I	P	3	Creatis	Inst. nours	Hours	CIA	External	Total
PU231V02	2	•	I	•	1	2	30	25	75	100

Pre-requisite:

Basic knowledge of non-conventional energy sources.

Learning Objectives:

- 1. To get the understanding of the conventional and non-conventional energy sources
- 2. To apply knowledge of conservation and storage systems to design and implement energy-based appliances.

	Course Outcomes					
Upon cor	npletion of this course, students will be able to:					
1	identify various forms of renewable and non-renewable energy sources.	K1				
2.	understand the fundamentals of wind energy conversion.	K2				
3.	apply the principle of a wind mill in producing energy.					
4.	correlate solar-based appliances for enhanced functionality.					
5.	defend the energy storage capacities of batteries.	K5				
K1- Ren	nember; K2- Understand; K3 – Apply; K4- Analyze; K5-	Evaluate				

Contents	No. of Hours
BASICS OF ENERGY SOURCES Conventional and non-conventional energy sources and their availability–Energy from other sources–chemical energy– Energy storage and distribution.	6
WIND ENERGY SOURCES Fundamentals of wind energy conversion-power in the wind- Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage	6
SOLAR ENERGY SOURCES Solar radiation and its measurements-solar cells- Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics	6
SOLAR APPLIANCES Efficiency–solar radiation geometry - solar water Heater –solar distillation– solar cooking–solar greenhouse - types of greenhouses –	6
	BASICS OF ENERGY SOURCESConventional and non-conventional energy sources and their availability-Energy from other sources-chemical energy- Energy storage and distribution.WIND ENERGY SOURCESFundamentals of wind energy conversion-power in the wind- Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storageSOLAR ENERGY SOURCESSolar radiation and its measurements-solar cells- Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristicsSOLAR APPLIANCESEfficiency-solar radiation geometry - solar water Heater -solar

	ENERGY STORAGE	
v	Importance of energy storage- batteries - fuel cells – types of fuel cells –	6
	advantages and disadvantages of fuel cells – applications of fuel cells - hydrogen storage.	
	nyurogen storage.	
	Total	30

Self-study

Batteries, Fuel Cells

Textbooks

- 1. Rai G D, 1996. Non conventional sources, (4th Edition), Khanna publishers, New Delhi.
- 2. Agarwal M P,1983Solar Energy, S. Chand and Co., New Delhi.
- 3. Sukhatme S P, 1997. *Solar energy, principles of thermal collection and storage*, (2nd Edition), Tata McGraw-Hill Publishing Co. Lt., New Delhi .
- 4. Hordeski G M, 1985. *Design of solar appliances.*, Englewood Cliffs, New Jersey: Reston.
- 5. Horne D F, 1988. *Measuring Systems for energy Applications*, Philadelphia, IOP Publishing ,Pennsylvania.

Reference Books

- 1. Mehta V K, Rohit Mehta, 2016. *Principles of Electronics*, S.Chand and Company, New Delhi.
- 2. Vijayendran V, Viswanathan S, 2011. *Introduction to Solar energy*. (1st Edition) (printers and Publishers) Pvt. Ltd., Chennai.
- 3. Thomas L. Floyd, 1999. *Energy Fundamentals*.(3rd ed.).,UBS- Publishers Distributers LTD, New Delhi.
- 4. Millman J. Halkias, C C, 1991. *Integrated Energy sources*. Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 5. Ryder, J D, 2004. *Energy storage: Fundamentals and Applications*. Prentice Hall International, INC., Englewood Cliffs., United States.

Web Resources

- 1. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
- 2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
- 3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
- 4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
- 5. https://www.acciona.com/renewable-energy/solar-energy/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

SEMESTER I

SPECIFIC VALUE-ADDED COURSE: PHYSICS OF HOME APPLIANCES

Course Code	т	т	р	G	Credits Inst. Hours		Total	Total Marks				
Course Code	L	I	r	ð	Creans	Inst. nours	Hours	CIA	External	Total		
PU231V03	2	•	•	•	1	2	30	25	75	100		

Pre-requisite:

Basic knowledge of home appliances.

Learning Objectives:

1.To get the understanding of the physics of home appliances.

2.To apply physics principles in daily life and appreciate the concepts with a better understanding.

	Course Outcomes								
	Upon completion of this course, students will be able to:								
1	1 illustrate the basic laws of physics in domestic appliances								
2	2 interpret the basic functionality of water purifier.								
2 articulate the fundamental physics concepts and their applications in everyday life.									
3									
4	appraise safety and security procedures.	K5							
11- Re	member; K2- Understand; K3 – Apply; K4- Analyze; K5-	Evalua							

Units	Contents	No. of Hours
I	INTRODUCTION TO ELECTRICITY Electric Charge- Voltage- Electric Current- Ohm's Law- Electric Potential- Cell- Serial and Parallel Circuit- their effect on Voltage and Current Transformer	6
II	MAINTENANCE OF WASHING MACHINE Testing and identification of the faulty block - rectifying common faults by replacing the damage components - Testing of the damage block after repair	6
III	BASIC FUNCTIONALITY OF WATER PURIFIER Working principle - functionality of different types of water Purifiers- part identification and their working- steps to install the water purifier- Water Filter Maintenance	6
IV	BASICS OF DOMESTIC APPLIANCES Electric Bulbs– types of fans and their working – hair drier – television – air conditioners – microwave ovens – vacuum cleaners and their working	6
V	SAFETY AND SECURITY PROCEDURES Reporting incidents- system failures- power failures -protection Equipment-Fuse- First aid requirement in case of electrical shocks and other injuries	6
	Total	30

Self-study Electric bulbs, Fans

Textbooks

1. Murugesan R, 2017. Electricity and Magnetism, S. Chand& Co., New Delhi.

- 2. Murugesan R, 1998. Modern Physics, S. Chand& Co., New Delhi.
- 3. Theraja B L, 2003. Basic Electronics, S. Chand& Co., New Delhi.
- 3. Subirkumar Sarkar, 2008. *Home appliances systems*. S. Chand & Company Ltd., New Delhi.
- 4. Palanisamy P K, 2002. Semiconductor physics, SCITECH Publication, Chennai.

Reference Books

- 1. Murugesan R, Kiruthiga Sivaprasath, 2016. *Modern Physics*, S. Chand & Company Ltd., New Delhi.
- 2. Ubald Raj A, Jose Robin G, 2006. *Mechanics*, Indira Publications, Marthandam.
- 3. Murugeshan R ,2016. *Circuits and its working*, S. Chand & Company Ltd., New Delhi.
- 4. Wilson, Hawker, 2004. *Electronics*, Prentice Hall of India, New Delhi.
- 5. Battacharya P, 2002. Semiconductor devices. PHI, New Delhi.

Web Resources

- 1. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
- 2. https://www.nationalgeographic.org/encyclopedia/hair drier /
- 3. https://www.ge.com/renewableenergy/wind-energy/what-is-vacuum cleaner/
- 4. https://www.reenergyholdings.com/renewable-energy/what-is-airconditioner/
- 5. https://www.acciona.com/renewable-energy/microwave oven/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

SEMESTER II

CORE COURSE II: HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS

Course Code	L	Т	Р	S	Credits	Inst.	Total		Marks	
						Hours	6 Hours CIA Ex		CIA External	
PU232CC1	5	-	-	-	5	5	75	25	75	100

Pre-requisite:

Knowledge on Temperature in different Scales and Laws of thermodynamics

Learning Objectives:

- 1. To understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales.
- 2. To Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

Course Outcomes

On the s	successful completion of the course, student will be able to:	
1.	acquires knowledge on how to distinguish between temperature and heat, and explain practical measurements of high temperature as well as low temperature physics.	K1 & K2
2.	derive the efficiency of Carnot's engine and discuss the implications of the laws of Thermodynamics in diesel and petrol engines	K1 & K3
3.	analyze performance of thermodynamic systems viz efficiency by problems and gets an insight into thermodynamic properties like enthalpy, entropy	K2 & K3
4.	study the process of thermal conductivity and apply it to good and bad conductors.	K2 & K3
5.	interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law, Bose-Einstein and Fermi-Dirac.	K2 & K3

K1 - Remember; K2 - Understand; K3 - Apply

	Contents	No. of
Units		Hours
Ι	CALORIMETRY: Specific heat capacity – specific heat capacity of gases	15
	CP& Cv- Meyer's relation – Joly's method for determination of Cv –	
	Regnault's method for determination of CP	
	LOW TEMPERATURE PHYSICS: Joule-Kelvin effect – porous plug	
	experiment - Joule-Thomson effect -Boyle temperature - temperature of	
	inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.	
II	THERMODYNAMICS-I: Zeroth law and first law of thermodynamics – P-V	15
	diagram - heat engine -efficiency of heat engine - Carnot's engine,	
	construction, working and efficiency of petrol engine and diesel engines -	
	comparison of engines.	
III	THERMODYNAMICS-II: Second law of thermodynamics-entropy of an	15
	ideal gas – entropy change in reversible and irreversible processes – T-S	
	diagram -thermodynamical scale of temperature - Maxwell's thermodynamical	
<i>Y</i>	relations - Clasius-Clapeyron's equation (first latent heat equation) - third law	
	of thermodynamics – unattainability of absolute zero – heat death.	
IV	HEAT TRANSFER: Modes of heat transfer: conduction, convection and	15
	radiation. Conduction: thermal conductivity - determination of thermal	
	conductivity of a good conductor by Forbe's method – determination of thermal	
	conductivity of a bad conductor by Lee's disc method.	
	Radiation: black body radiation (Ferry's method) - distribution of energy in	
	black body radiation - Wien's law and Rayleigh Jean's law -Planck's law of	

	radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law.	
V	STATISTICAL MECHANICS: Definition of phase-space – micro and macro states – ensembles –different types of ensembles – classical and quantum Statistics – Maxwell Boltzmann statistics – expression for distribution function – Bose-Einstein statistics – expression for distribution function – Fermi-Dirac statistics – expression for distribution function – comparison of three statistics.	
	TOTAL	75

Self-study	Temperature of inversion ; Comparison of engines; Entropy of an ideal gas;
	Stefan's law; Comparison of three statistics.

Textbooks

- 1. Brijlal , Subramaniam, N. Henne, P. S. 2008. Heat Thermodynamics and Statistical Physics, Revised Edition, S.Chand & Co., New Delhi.
- 2. Murugeshan, R. Kiruthiga Sivaprasath. 2013, Thermal Physics, 2nd edn., Sulthan Chand & Sons, New Delhi.
- 3. Jauaraman, D. Ilangovan. K. 2009, Thermal Physics and Statistical Mechanics, 1st edn., S. Viswanathan Publishers and Printers, Chennai.

Reference Books

- 1. Ubald Raj A. and Jose Robin G. 2001, Thermal Physics and Statistical Mechanics. 1st edn. Indira publication. Marthandam, Tamil Nadu.
- 2. Mathur, D.S. 2014. Heat and Thermodynamics, 5th Edition, Sultan Chand & Sons, New Delhi.
- 3. Gupta, Kumar, Sharma, 2013. Statistical Mechanics (Twenty-Sixth Edition), S. Chand & Co. Ltd., New Delhi.
- 4. Sears, Zemansky, Hugh D. Young, Roger, Freedman, A. 2021. University Physics with Modern Physics (Fifteenth Edition), Pearson, New Jersey.
- 5. Ubald Raj A. and Jose Robin G. 2005, Mechanics and Thermal Physics. 1st edn. Indira publication. Marthandam, Tamil Nadu.

Web Resources

- 1. https://www.youtube.com/watch?v=M_5KYncYNyc
- 2. https://www.youtube.com/watch?v=pQWwP7YYH60
- 3. https://www.youtube.com/watch?v=LUoUb4hGMH8
- 4. https://ocw.mit.edu/courses/5-60-thermodynamics-kinetics-spring-2008/resources/lecture-2-work-heat-first-law/
- 5. https://ocw.mit.edu/courses/5-60-thermodynamics-kinetics-spring-2008/resources/lecture-13-gibbs-free-energy/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3	3	3	3	2	2	1	1
CO2	2	3	3	3	2	3	3	3	2	2	1	1
CO3	3	3	3	2	3	3	3	3	2	2	2	1
CO4	3	3	3	3	3	3	3	3	2	2	1	2
CO5	3	3	2	3	3	3	2	3	2	2	1	1
TOTAL	14	15	14	14	14	15	14	15	10	10	6	6
AVERAGE	2.8	3	2.8	2.8	2.8	3	2.8	3	2	2	1.6	1.6

SEMESTER II CORE LAB COURSE II: GENERAL PHYSICS LAB II

Course Code	L	Т	Р	S	Credits	Inst.	Total		Marks	
						Hours	Hours	CIA External		Total
PU232CP1	-	-	3	-	3	3	45	25	75	100

Prerequisites: Types of Modulus, Knowledge on thermal conductivity and specific heat capacity

Learning Objectives:

- 1. To apply their knowledge gained about the concept of heat and sound waves, resonance.
- 2. To do error analysis and correlate results

Course Outcomes

On th	ne successful completion of the course, students will able to:	
1.	understand the strength of materials using physical experiments.	K2
2.	acquire knowledge of thermal behaviour of the materials.	K1
3.	analyze the physical principle involved in the various instruments such as sonometer and Melde's String.	K4
4.	understand the scientific method and an ability to apply the scientific method in practice.	K2
	K1 Remember: K2 Understand: K3 Apply: K4 Applyze	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

Contents

(Any Eight Experiments)

- 1. Verification of Newton's law of cooling
- 2. Determination of specific heat by cooling graphical method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Frequency of AC by using Sonometer.
- 5. To verify the laws of transverse vibration using sonometer.
- 6. Velocity of sound through a wire using Sonometer.
- 7. To verify the laws of transverse vibration using Melde's apparatus.
- 8. Determination of g using compound pendulum.
- 9. Determination of thermal conductivity of good conductor by Searle's method.
- 10. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 11. Determination of specific heat capacity of solid.
- 12. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 13. Determination of Latent heat of a vaporization of a liquid.
- 14. Verification of Stefan's-Boltzmans law.
- 15. Determination of thermal conductivity of rubber tube.
- 16. Helmholtz resonator.
- 17. Determination of velocity of sound using Kunds tube.
- 18. Determination of frequency of an electrically maintained tuning fork
- 19. To compare the mass per unit length of two strings using Melde's apparatus.
- 20. Determination of moment of inertia and g using Bifilar pendulum.

Reference Books

- 1. Manual prepared by the department
- 2. Ouseph, C, C., Rao, U, J. and Vijayendran, V. 2007. Practical Physics and Electronics. S. Viswanathan, Pvt., Ltd. Chennai.

AILD I ROOMANINE SI ECH IC OUICOMES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	3	3	3	3	3	3	2
CO2	2	3	2	3	2	3	3	3	2	2	3	2
CO3	3	3	2	2	3	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	3	3	2	2	2	2
TOTAL	11	12	8	11	11	12	12	12	9	9	10	8
AVERAGE	2.75	3	2	2.75	2.75	3	3	3	2.25	2.25	2.5	2
				• ~ ·	-		-					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER II ELECTIVE COURSE II: ALLIED PHYSICS FOR MATHEMATICS – II

Course	т	т	Р	S	Credits	Inst.	Total	Marks			
Code	L	I				Hours	Hours	CIA	External	Total	
PU232EC1	4	-	-	-	3	4	60	25	75	100	

Prerequisites: Knowledge on basic Physics

Learning Objectives:

- 1. To impart basic principles of Physics
- 2. To incorporate concepts of Physics in day to day life

Course Outcomes

On	the successful completion of the course, student will be able to:	
1	explain the concepts of interference, diffraction and rephrase the concept	K1 &
	of polarization	K2
2	outline the basic foundation of different atom models and relate the	K1 &
	importance of theoretical models	K2
3	understand the properties of nuclei, nuclear forces, structure of atomic	K2&
	nucleus and nuclear models and interpret nuclear processes like fission	K3
	and fusion.	
4	describe the basic concepts of relativity like equivalence principle,	K3 &
	inertial frames and Lorentz transformation.	K4
5	summarize the working of semiconductor devices like diodes, transistors,	K4&
	USB chargers and EV charging stations.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Unit	Contents	No. of							
		Hours							
Ι	OPTICS	12							
	Interference – interference in thin films –colours of thin films – air wedge –								
	determination of diameter of a thin wire by air wedge - diffraction -								
	diffraction of light vs sound – normal incidence – experimental determination								
	of wavelength using diffraction grating (no theory) - polarization -								
	polarization by double reflection – Brewster's law – optical activity –								
	application in sugar industries								
II									
	Atom models – Bohr atom model – mass number – atomic number – nucleons								
	- vector atom model - various quantum numbers - Pauli's exclusion principle								
	– electronic configuration – periodic classification of elements – Bohr								
	magneton – Stark effect –Zeeman effect (elementary ideas only) – photo								
	electric effect – Einstein's photoelectric equation – applications of								
	photoelectric effect: solar cells, solar panels, optoelectric devices								
Ш	NUCLEAR PHYSICS	12							
	Nuclear models – liquid drop model – magic numbers – shell model – nuclear								
	energy – mass defect – binding energy – radioactivity – uses – half life – mean								
	life - radio isotopes and uses –controlled and uncontrolled chain reaction –								
	nuclear fission – energy released in fission – chain reaction – critical reaction								
	– critical size- atom bomb – nuclear reactor – breeder reactor – importance of								
	commissioning PFBR in our country – heavy water disposal, safety of								
	reactors: seismic and floods –introduction to DAE, IAEA – nuclear fusion –								
	thermonuclear reactions – differences between fission and fusion.								
r		I							

IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES Frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence – introduction on gravitational waves, LIGO, ICTS opportunities at International Centre for Theoretical Sciences	12								
V	SEMICONDUCTOR PHYSICS									
	p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave									
	bridge rectifier - construction and working - advantages (no mathematical									
	treatment) – USB cell phone charger –introduction to e-vehicles and EV									
	charging stations									
	TOTAL	60								

Self-study Application in sugar industries; Zeeman effect; nuclear fusion; ICTS opportunities at International Centre for Theoretical Sciences; USB cell phone charger

Textbooks

- 1. Murugesan R. (2001), Allied Physics, S. Chand & Co, New Delhi.
- 2. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.

Reference Books

- 1. Resnick Halliday and Walker (2018), Fundamentals of Physics, 11th Edn., John Willey and Sons, Asia Pvt .Ltd., Singapore.
- 2. Thangaraj K.and Jayaraman D. (2004), Allied Physics, Popular Book Depot, Chennai.
- 3. Beiser A. (2003), Concepts of Modern Physics, Tata McGraw Hill Publication, New Delhi.
- 4. Murugesan R. (2005), Modern Physics, S.Chand&Co, New Delhi.
- 5. Subramaniyam A. (2001), Applied Electronics, 2nd Edn., National Publishing Co., Chennai.

Web Resources

- 1. https://www.berkshire.com/learning-center/delta-p-facemask/
- 2. https://www.youtube.com/watch?v=QrhxU47gtj4
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm -
- 5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects
- https://www.berkshire.com/learning-center/deltapfacemask/https://www.youtube.com/watch?v=QrhxU47gtj4
- 7. https://www.youtube.com/watch?time_continue=318&v=D38BjgUdL5U&feature=emb_log

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO	1 PC	02 PO	03 PO4	4 PO5	5 PO6	6 PO7	PSO1	PSO2	PSO3				
C01	3	3	2	2	3	2	2	2	2	2				
CO2	2	3	3	2	3	2	3	2	3	2				
CO3	2	2	2	2	2	3	3	3	2	2				
CO4	3	3	2	2	3	2	2	2	2	2				
CO5	2	3	2	3	2	2	3	2	2	2				
TOTAL	. 12	14	11	11	13	11	13	11	11	10				
AVERAG	E 2.4	2.8	3 2.2	2 2.2	2.6	2.2	2.6	2.2	2.2	2.0				

3 – Strong, 2- Medium, 1- Low

SEMESTER II ELECTIVE LAB COURSE II: ALLIED PHYSICS PRACTICAL FOR MATHEMATICS II

Course	L	Т	Р	S	Credits	Inst.	Total	Marks				
Code						Hours	Hours					
PU232EP1	-	-	2	-	2	2	30	CIA	External	Total		
								25	75	100		

Prerequisites:

Basic Knowledge in physics experiments

Learning Objectives:

- 1. To apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyze,
- 2. To able to do error analysis and correlate results

Course Outcomes

On the successful completion of the course, student will be able to:											
1	understand the nature of monochromatic light and its diffraction and	K2									
	interference phenomenon										
2	design simple logic circuits										
3	analyze the physical principle involved in the various instruments	K4									
4	understand the scientific method and an ability to apply the scientific method										
	in practice.										

K2 – Understand; K3 - Apply; K4 - Analyze

Contents

(Any Eight Experiments)

- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Wavelength of mercury lines using spectrometer and grating
- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Thermal conductivity of poor conductor using Lee's disc
- 7. Determination of Earth's magnetic field using field along the axis of a coil
- 8. Determination of AC frequency using sonometer
- 9. Characterization of Zener diode
- 10. Construction of Zerner/IC regulated power supply
- 11. Construction of AND, OR, NOT gates using diodes and transistor
- 12. NOR gate as a universal building block

Reference Books

1. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.

	PROGRAMME SPECIFIC OUTCOMES												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	
/	CO1	2	3	2	2	3	2	2	2	2	2	3	
	CO2	2	3	3	2	3	2	3	2	3	2	3	
	CO3	2	2	2	2	2	3	2	3	2	2	3	
	CO4	3	3	2	2	3	2	3	2	2	3	3	
	TOTAL	9	11	9	8	11	9	10	9	9	9	12	
	AVERAGE	2.25	2.75	2.25	2.0	2.75	2.25	2.5	2.25	2.25	2.25	3.0	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER II NON-MAJOR ELECTIVE NME II: PHYSICS OF MUSIC

Course Code	т	т	п	C	Cuadita	In at II anna	Total	Marks		
Course Code	L	I	P	3	Creatis	Inst. Hours	Hours	CIA	External	Total
PU232NM1	2	-	-	-	2	2	30	25	75	100

Pre-requisite:

Students should know about the basic knowledge regarding sound, vibrating systems and musical instruments.

Learning Objectives:

- 1. To educate and instruct students on the significance of physics in music.
- 2. To gain understanding of musical notes and instruments.

Course Outcomes

On the successful completion of the course, student will be able to:								
1.	understand the principles and basic scientific concepts in sound waves	K2						
2.	understand the various phenomena of simple vibrating systems.	K1						
3.	comprehend the various musical notes and its production	K2						
4.	apply the knowledge of recording music in day to day life activities.	K3						
5.	know the scientific concepts of music	K2						

K1 - Remember; **K2** - Understand; **K3** - Apply

Units	Contents	No. of Hours
I	SCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter– vibrations coupling to air – propagation of sound waves in air, other media, fluids & solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human & animal sound perception– mechanism of ear and hearing – psychoacoustics	6
II	SIMPLE VIBRATING SYSTEMS: Simple harmonic motion – tuning fork– amplitude, phase, energy, energy loss/damping/ dissipation – power – travelling waves and standing waves– laws of vibration in stretched strings– one-dimensional medium – open and closed organ pipes – over tones, harmonics – quality of sound: pitch, timber, loudness – octaves, musical notes	6
ш	MUSICAL TONE: pure/simple tones – sine/cosine waves– well-defined frequencies, wavelengths, amplitudes & phases– partial tones – assembly of pure tones– mix of different frequencies & amplitudes– complex tone – superposition of simple tones – complex waveform– periodic complex waveform – formants – resonances– sound envelope	6
IV	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism of vocal sound production – larynx (sound box) – stringed Instruments: plucked &bowed, guitar, mandolin, violin, piano, etc. – wind instruments: whistles, flute, saxophone, pipe organ, bag pipes, etc. – percussion instruments: plates, membranes, drums, cymbals, xylophone etc. – electronic instruments: keyboards, electric guitars, rhythm pads, etc. – analog and digital sound synthesizers, –MIDI instrument– computer generated music	6
V	RECORDING OF MUSIC & SOUND Edison phonograph – cylinder & disk records – magnetic wire and tape recorders – digital recording (e.g. to CD, DVD, etc.)– analog transducers, condenser, dynamic microphones, loudspeaker – complex sound fields – near	6

& far fields of acoustic- spectral analysis techniques - continuous & discrete Fourier transforms, digital signal processing – digital filtering – specifications of recording studios

30

TOTAL

Self -Study Simple tones, frequencies, wavelength, Musical Instruments

Textbooks

- 1. Harvey White, 2014, Physics and Music: The Science of Musical Sound. Dover Publications Inc. New York.
- 2. Barry Parker, 2009, Good Vibrations The Physics of Music. John Hopkins University Press, Baltimore
- 3. Curt Sachs, 2006, The History of Musical Instruments. Dover Publications Inc, New York
- 4. Kinko Tsuji and Stefan C. Müller, 2021, Physics and Music: Essential Connections and Illuminating Excursions, Springer Nature, Switzerland.
- 5. Panos Photinos, 2017, Musical Sounds, Instruments and Equipment, Morgan Claypool Publishers, USA

Reference Books

- 1. Gerardin Jayam. 2019. Physics in Everyday Life. Published by the Department of Physics, Holy Cross College (Autonomous), Nagercoil.
- 2. Ian Johnston, 2009, Measured Tones, 3rd edition, CRC Press, Taylor and Francis Group, New York.
- 3. Michael J Morovcsik, 2002, Musical Sound, A Solomon Press Book, Kluwer Academic/Plenum Publishers, Moscow.
- 4. Curt Sachs, 2022, The Rise of Music in the Ancient World: East And West, Gyan Publishing House, New Delhi
- 5. Panos Photinos, 2021, The Physics of Sound Waves: Music, Instruments, and Sound Equipment, 2nd Edition, IOP Publishing Ltd, UK

Web Resources

- 1. https://www.britannica.com/science/musical-sound
- 2. https://blog.landr.com/sound-recording/
- 3.https://www.britannica.com/topic/music-recording/The-development-ofmusicalrecording

4. https://ccrma.stanford.edu/CCRMA/Courses/152/vibrating_systems.html

MAPPING WITH PROGRAMME OUTCOMES

		-	AND	PRO	GRAN	MME	SPEC	CIFIC (DUTCO	DMES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	1	1	1	2	2	3	2	2	2	2
CO2	3	2	1	1	1	2	2	3	2	2	2	2
CO3	3	2	1	1	1	1	2	2	2	2	2	2
CO4	3	3	2	1	1	2	3	3	2	2	2	2
CO5	2	2	2	1	1	2	2	2	2	2	2	2
TOTAL	14	11	7	5	5	9	11	13	10	10	10	10
AVERAGE	2.8	2.2	1.4	1	1	1.8	2.2	2.6	2	2	2	2
			2	Str	ong 1		lium	1 L ou	7			

3 – Strong, 2- Medium, 1- Low

SEMESTER II SKILL ENHANCEMENT COURSE SEC-I: DIGITAL PHOTOGRAPHY

Course Code	т	т	D	G	Credita	Inst.	Total	Marks		
Course Code	L	1	r	3	Credits	Hours	Hours	CIA	External	Total
PU232SE1	2	-	-	-	2	2	30	25	75	100

Prerequisites:

Basic Knowledge in optics and imaging.

Learning Objectives:

- 1. To understand the principles of photography and image formation and the science and arts behind it.
- 2. To understand the essential components of conventional and digital cameras and also the different image processing techniques.

Course Outcomes

On	On the successful completion of the course, student will be able to:						
1	describe the principle of image formation in Photography	K2					
2	apply the parameters for controlling the images	K3					
3	identify different types of camera	K4					
4	explain the image formation in Digital Photography	K2					
5	illustrate the digital image – postproduction procedures	K3					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

Units	Contents	No. of
	× OY	Hours
	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE	
	FORMATION:	
	Principle –chemical route and digital route –light, wavelengths, colours –	
Ι	shadows – light intensity and distance – making light form images –pin-	6
	hole images – practical limitations to pin-hole images – lens instead of pin-	
	hole – focal length and image size – imaging of closer subjects.	
	LENSES – CONTROLLING THE IMAGES:	
	Photographic lens – focal length and angle of view (problems) – focusing	
II	movement – aperture and f-numbers (problems) – depth of field– depth of	6
	focus – image stabilization – lenses for digital cameras – lens and camera	
	care	
	CAMERA USING FILMS AND ITS TYPES:	
III	Camera and its essential components-shutter - aperture - light	6
	measurement – film housing – camera types: view camera- view finder	
	camera – Reflex camera- single lens reflex (SLR) camera	
	DIGITAL CAMERAS PRINCIPLE AND TYPES	
	Principle of digital image capturing –comparison of digital and analog	
IV	picture information – megapixel – grain, noise and pixel density – optical	6
	and digital zooming – image stabilizer – bit depth – white balance – colour	
Y	modes – file formats (TIFF, RAW & amp;	
	JPEG) – storage cards and types – digital cameras: camera phones –	
	compact camera – hybrid camera – digital SLR.	
	THE DIGITAL IMAGE – POSTPRODUCTION	
	Hardware: computer and its peripherals – software: saving digital file –	
	basic editing: navigating the image – undo/redo/history – crop – rotate –	
	brightness & amp; contrast - colour balance - hue/saturation - dodge/burn	
V	- cloning & amp; retouching - removing an element in an image -	6

 printing digital images: inkjet printer – laser printer – dye sub printer – lambda/ light jet printers. 	
advanced editing: histogram/levels – curves – selection tools: magic wand	

TOTAL

30

Self-study Imaging of closer subjects; Lens and camera care; Camera and its essential components; Digital cameras: camera phones;Laser printer

Textbooks

- 1. Michel J.Langford, Anna Fox & Richard Sawdon Smith, 2010, Basic Photography, 9th Edition, Focal press, London
- 2. Henry Carroll. 2014, Read this if you want to take great photographs of people, Laurence King Publishing House.

Reference Books

- 1. Mark Galer (2006), Digital Photography in Available Light essential skills, Focal press, London
- 2. Paul Harcourt Davies (2005), The Photographer's practical handbook, UK Press

Web Resources

- 1. https://www.accessengineeringlibrary.com/binary/mheaeworks/27573c8a4e04bc1a/ 1ae690cdd3d5711fdbe6463f02945caf923faf161b30f99e05e9d8f1d5932641/principl es-of-photography-and-imaging.pdf?implicit-login=true&sigmatoken=AibpD1dgOcmXs4X3fz1ok4_1xmSXEZEQOFzoGKqkIE
- 2. https://www.masterclass.com/articles/basic-photography-101-understandingcamera-lenses
- 3. https://blog.magnasonic.com/different-film-types-formats-sizes/
- 4. https://av.jpn.support.panasonic.com/support/global/cs/dsc/knowhow/knowhow01.ht ml
- 5. https://en.wikibooks.org/wiki/Digital_Photography/Post_Processing

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	3	3	3	3	3	3	3	3	3	3		
CO2	2	3	3	3	3	3	3	2	3	3	3	3		
CO3	3	3	3	2	3	3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3	3	3	3	3	3	3		
CO5	3	2	3	3	3	3	3	3	2	3	3	3		
TOTAL	14	14	15	14	15	15	15	14	14	15	15	15		
AVERAGE	2.8	2.8	3	2.8	3	3	3	2.8	2.8	3	3	3		
				2	C 4	A B		1 T						

3 – Strong, 2- Medium, 1- Low

SEMESTER I & II LIFE SKILL TRAINING I: CATECHISM

Course Code	т	т	L T P S Credits Inst. Hours Total	р						
Course Code	L	I	r	3	Creans	Inst. Hours	Hours	CIA	External	Total
UG232LC1	1	-	-	-	1	1	15	50	50	100

Learning Objectives:

- 1. To develop human values through value education
- 2. To understand the significance of humane and values to lead a moral life
- 3. To make the students realize how values lead to success
 - **Course Outcomes**

On t	he successful completion of the course, student will be able to:	
1	understand the aim and significance of value education	K1,K2
2	develop individual skills and act confidently in the society	K3
3	learn how to live lovingly through family values	K3
4	enhance spiritual values through strong faith in God	K6
5	learn good behaviours through social values	K6

K1 - Remember K2-Understand; K3-Apply; K6- Create

Units	Contents	No. of						
		Hours						
	Value Education:							
Ι	Human Values – Types of Values – Growth – Components – Need and							
	Importance - Bible Reference: Matthew: 5:3-16							
	Individual Values: Esther							
II	Vanishing Humanity - Components of Humanity - Crisis - Balanced	3						
	Emotion – Values of Life - Bible Reference: Esther 8:3-6							
	Family Values: Ruth the Moabite							
	Respecting Parents – Loving Everyone – Confession – True Love							
TTT	Bible Reference: Ruth 2:10-13							
III	Spiritual Values: Hannah							
	Faith in God – Wisdom – Spiritual Discipline – Fear in God – Spiritually							
	Good Deeds -Bible Reference: 1 Samuel 1:24-28							
	Social Values: Deborah							
IV	Good Behaviour – Devotion to Teachers – Save Nature – Positive Thoughts	3						
	-The Role of Youth in Social Welfare - Bible Reference: Judges 4:4-9							
	Cultural Values: Mary of Bethany							
\mathbf{V}	Traditional Culture – Changing Culture – Food – Dress – Habit –	3						
	Relationship – Media – The Role of Youth - Bible Reference: Luke 10:38-42							
	Total	15						

Textbook

Humane and Values. Holy Cross College (Autonomous), Nagercoil The Holy Bible

SEMESTER I & II LIFE SKILL TRAINING I: MORAL

Course Code	т	т	р	G	Credita	Inst Houng	Total					
Course Code	L	I	r	ð	Creans	dits Inst. Hours	Hours	CIA	External	Total		
UG232LM1	1	-	-	-	1	1	15	50	50	100		

Learning Objectives:

- 1. To develop human values through value education
- 2. To understand the significance of humane and values to lead a moral life
- 3. To make the students realize how values lead to success
- **Course Outcomes**

On the successful completion of the course, student will be able to:						
1	understand the aim and significance of value education					
2	develop individual skills and act confidently in the society	K3				
3	learn how to live lovingly through family values	K3				
4	enhance spiritual values through strong faith in God	K6				
5	learn good behaviours through social values	K6				

K1 - Remember K2-Understand; K3-Apply; K6- Create

Units	Contents	No. of						
	Value Education:							
Ι	Introduction – Limitations – Human Values – Types of Values – Aim	3						
	of Value Education – Growth – Components – Need and Importance							
	Individual Values:							
II	I Individual Assessment – Vanishing Humanity – Components of							
	Humanity – Crisis – Balanced Emotion – Values of Life.							
	Family Values:							
III	Life Assessment – Respecting Parents – Loving Everyone –							
	Confession – True Love.							
	Spiritual Values:							
IV	Faith in God – Wisdom – Spiritual Discipline – Fear in God –	3						
	Spiritually Good Deeds.							
	Social Values:							
	Good Behaviour – Devotion to Teachers – Save Nature – Positive							
V	Thoughts – Drug Free Path – The Role of Youth in Social Welfare.	3						
v	Cultural Values:							
	Traditional Culture – Changing Culture – Food – Dress – Habit –							
C	Relationship – Media – The Role of Youth.							
1	Total	15						

Text Book

Humane and Values. Holy Cross College (Autonomous), Nagercoil

SEMESTER III

CORE COURSE III: GENERAL MECHANICS AND CLASSICAL MECHANICS

Course Code	т	т	р	S	Credits	Inst Hound	Total		Marks	
Course Code	L	I	r	3	Creans	Inst. Hours	Hours	CIA	External	Total
PU233CC1	5	_	_	_	5	5	75	25	75	100

Pre-requisite:

Basic knowledge of physics principles, Laws of conservation and Rigid Body.

Learning Objectives:

- 1. To have a basic understanding of the laws and principles of mechanics and to apply the concepts of forces existing in the system.
- 2. To understand the forces of physics in everyday life and to apply Lagrangian equation for solving complex problems.

Course (Dutcomes
----------	----------

On the successful completion of the course, students will be able to:						
recognize Newton's Law of motion, general theory of relativity, Kepler's laws and the basic principles behind planetary motion.						
infer the knowledge on the conservation laws.	K2					
relate conservation law and calculate energy of various systems, understand and differentiate conservative and non–conservative forces.	K3					
devise concepts of rigid body dynamics and solve problems.	K4					
defend Lagrangian system of mechanics and D' Alembert's principle.	K5					
	recognize Newton's Law of motion, general theory of relativity, Kepler's laws and the basic principles behind planetary motion. infer the knowledge on the conservation laws. relate conservation law and calculate energy of various systems, understand and differentiate conservative and non–conservative forces. devise concepts of rigid body dynamics and solve problems.					

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate

Units	Contents	No. of Hours
Ι	LAWS OF MOTION Newton's Laws- forces – equations of motion – motion of a particle in a uniform gravitational field –Gravitation: Classical theory of gravitation- Kepler's laws, Newton's law of gravitation – Determination of G by Boy's method – Earth-moon system- Earth satellites –Earth density – mass of the Sun – gravitational potential – velocity of escape –Einstein's theory of gravitation – introduction – Principle of equivalence- gravitational red shift – bending of light.	15
п	CONSERVATION LAWS OF LINEAR AND ANGULAR MOMENTUM Conservation of linear and angular momentum – Internal forces and momentum conservation – Centre of mass – Examples – General elastic collision of particles of different masses – System with variable mass – Examples – Conservation of angular momentum – Torque due to internal forces – Torque due to gravity – Angular momentum about centre of mass – Proton scattering by heavy nucleus.	15
ш	CONSERVATION LAWS OF ENERGY Introduction – Significance of conservation laws – Law of conservation of energy – Work – Power – Work – Kinetic energy theorem– Work done in lifting and lowering an object – Conservative forces – Work done by spring force – Work done by the gravitational force – Gravitational potential energy and elastic potential energy – Examples – Non–conservative forces	15

IV	RIGID BODY DYNAMICS Translational and rotational motion – Angular momentum – Moment of inertia – General theorems of moment of inertia – Examples – Rotation about fixed axis – Kinetic energy of rotation – Examples – Body rolling along a plane surface – Body rolling down an inclined plane – Gyroscopic precision – Gyrostatic applications.	15
v	LAGRANGIAN MECHANICS Generalized coordinates –Degrees of freedom – Constraints – Holonomic and non–holonomic –Scleronomic and rheonomic constraints – Principle of virtual work and D' Alembert's Principle –Lagrange's equation from D' Alembert's principle – Application – Simple pendulum – Atwood's machine.	15
	Total	75

Textbooks

- 1. Upadhyaya J C, 2019. Classical Mechanics, Himalaya Publishing house, Mumbai.
- 2. Halliday, David Robert Resnick, Walker Jearl, 2008. *Fundamentals of Physics*, John Wiley, New Delhi
- 3. Durai Pandian P, Laxmi Durai Pandian, Muthamizh Jayapragasam, 2005. *Mechanics*, (6th Edition), S. Chand & Co, Chennai.

Reference Books

- 1. Goldstein Herbert, 2011. *Classical Mechanics*, (3rd Edition), Dorling Kindersley Pearson Education, India.
- 2. Mathur D S, Hemne P S, 2012. *Mechanics*, (Revised Edition), Chand and Co, New Delhi.
- 3. Roy N R, 2016. *Introduction to Classical Mechanics*, (1st Edition), Vikas Publishing House, New Delhi.
- 4. Rao K, 2003. Classical Mechanics, Universities Press, India.
- 5. Narayanamurthi, Nagarathnam N, 1998. Dynamics, National Publishing, Chennai.

Web Resources

- 1. https://youtu.be/X4_K–XLUIB4
- 2. https://nptel.ac.in/courses/115103115
- 3. https://www.youtube.com/watch?v=p075LPq3Eas
- 4. https://www.youtube.com/watch?v=mH_pS6fruyg
- 5. https://onlinecourses.nptel.ac.in/noc22_me96/preview

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

			-				-		00111			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2	3	3	2	3	3	3	3
CO2	3	3	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	3	2	3	3	2	3	3	3	3
CO4	3	3	3	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	2	3	3	2	3	3	3
TOTAL	15	15	15	15	12	13	15	12	13	15	15	15
AVERAGE	3	3	3	3	2.4	2.6	3	2.4	2.6	3	3	3

3 – Strong, 2– Medium, 1– Low

١

SEMESTER III CORE LAB COURSE III: GENERAL PHYSICS LAB III

Course Code	т	т	р	S	Cuadita Inst Houng		Total		Marks	
Course Code	L	I	r	S	Credits	Inst. Hours	Hours	CIA	External	Total
PU233CP1	-	-	3	-	3	3	45	25	75	100

Pre-requisite:

Knowledge on basic Physics, Electricity, Magnetism and Arithmetic.

Learning Objectives:

- 1. To understand electricity, current, resistance, and circuit parameters by constructing different circuits.
- 2. To apply the concepts of electricity, current, resistance, and circuit parameters for setting up experiments, and then observe, analyse and assimilate the concepts.

Course	Outcomes

Ont	the successful completion of the course, students will be able to:	
1.	remember and understand the scientific method to construct simple circuits.	K1&K2
2.	apply basic skills and attitudes enabling application in the physics field.	K3
3.	analyse the physical principle involved in the various instruments such as	K4
5.	potentiometer, galvanometer, electrical bridge etc.	N4
4.	evaluate a record of experiments in a clear and structured written format	К5
4.	augmented with relevant figures and graphs wherever needed.	K3
5.	develop prototypes by utilizing physics concepts in practical situations.	K6
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate; K6	– Create
	Contents (Any Eight experiments)	
1.	Calibration of low range voltmeter using potentiometer	
2.	Calibration of ammeter using potentiometer.	
3.	Compare the capacitances of two capacitors by forming De Sauty's bridge.	
4.	Determine self-inductance of the coil using Owen's bridge.	
5.	Determine the resonant frequency, inductance of the coil, band width	, voltage
	magnification factor and quality factor (Q) of the LCR - Series resonance cir	cuit.
6.	Determination of figure of merit of BG.	
7.	Construct a Zener diode voltage regulator and measure its DC output.	
8.	Construct Zener Diode circuit in Forward and Reverse bias and ana	alyze V-I
	Characteristics of Zener diode.	
9.	Determine absolute value of the magnetic dipole moment (M) of the given of	
	earth's horizontal magnetic induction (B _H) using deflection and	vibration
	magnetometer.	
10		axis of a
	circular coil caring current.	
	. Determination of absolute capacitance using BG.	
	. Determination of earth's magnetic field using field along axis of current carr	ying coil.
	tbooks	
1	. Ouseph C, Rao U J, Vijayendran V, 2007. Practical Physics and Ele	ectronics,
)	S. Viswanathan, Pvt., Ltd. Chennai.	
	2. Arora C L, 2001. B.Sc. <i>Practical Physics</i> , S. Chand Publishing, New Delhi.	
3	8. Srinivasan M N, Balasubramanian S, Ranganathan R, 2013. A Textbook of	Practical
	<i>Physics</i> , S. Chand Publishing, New Delhi.	
4	. Wood L, Sladjana, 2017. General Physics Lab Manual, Volume Two (Third	l Edition)
_	American Press, United States.	
5	5. Harnam Singh, 2000. B.Sc. Practical Physics, S. Chand Publishing, New Del	lh1.

Reference Books

- 1. Shukla R K, 2007. *Practical Physics*. New Age International (P) Limited, Publishers. India.
- 2. Ware M J, Peatross J, 2015. *Physics of Light and Optics*, Black & White Brigham Young University, Department of Physics, United States.
- 3. James J F, 2014. An Introduction to Practical Laboratory Optics. Cambridge University Press, United Kingdom
- 4. Henderson J, 2006. *Practical Electricity and Magnetism*. Longmans Green and Company, India.
- 5. Purcell E M, 2013. *Electricity and Magnetism*. Cambridge University Press, United Kingdom.

Web Resources

- 1. https://youtu.be/3eC3qtGOENA?si=9HSj8ENuBZMmkgJd
- 2. https://youtu.be/AWkmfIH_MNA?si=cvTPWfVHTjKhed8Q
- 3. https://youtu.be/Lga4b7j-MQM?si=_-bsXaaOUoq_bUpQ
- 4. https://youtu.be/PfBQEhLKDRc?si=P5ze_milbPw2egNf
- 5. https://youtu.be/ugO1G7_1a-o?si=yG2vmtZMS7jUFGLl

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2	3	3	3	3	3	3	3
CO2	3	3	3	2	2	3	3	3	3	3	3	3
CO3	3	3	3	2	2	3	3	3	3	3	3	3
CO4	3	2	2	2	2	3	2	2	2	3	3	2
CO5	3	2	2	3	3	2	2	2	2	3	3	2
TOTAL	15	13	13	11	11	14	13	13	13	15	15	13
AVERAGE	3	2.6	2.6	2.2	2.2	2.8	2.6	2.6	2.6	3	3	2.6

3 – Strong, 2- Medium, 1- Low

SEMESTER III

ELECTIVE COURSE III: ALLIED PHYSICS FOR CHEMISTRY – I

Course Code	т	Т	р	G	Credits	Inst. Hours	Total	Marks			
Course Code	L		r	3	Creans	mst. nours	Hours	CIA	External	Total	
PU233EC1	4	1	-	-	3	4	60	25	75	100	

Pre-requisite:

Basic knowledge of physics principles, Properties of Matter, Waves

Learning Objectives:

- 1. To gain a comprehensive understanding of the fundamental principles in Physics.
- **2.** To develop skills for interpreting physical phenomena beneficial for students who have taken programmes other than Physics.

Course	Outcomes
--------	----------

Ont	On the successful completion of the course, students will be able to:							
1.	identify the basic concepts in waves, characteristics of matter, electricity and magnetism, as well as electronics.	K1						
2.	interpret the principles of ultrasonics and surface tension, and explore their practical applications within the medical domain.	K2						
3.	articulate real-world solutions leveraging the principles of electricity, magnetism, and electronics within the framework of Digital India.	K3						
4.	categorise physics principles in everyday situations.	K4						
5.	prioritize Boolean algebraic concepts in practical scenarios.	K5						

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate

Units	Contents	No. of Hours
I	PROPERTIES OF MATTER Elasticity: Elastic constants – Bending of beam – Theory of non- uniform bending – Determination of Young's modulus by non-uniform bending – determination of rigidity modulus by torsional pendulum Viscosity: streamline and turbulent motion – Critical velocity – Coefficient of viscosity Surface tension: definition – Interfacial surface tension - Drop weight method	12
п	HEAT AND THERMODYNAMICS Joule-Kelvin effect – Joule-Thomson porous plug experiment – Temperature of inversion –Liquefaction of Oxygen – Linde's process of liquefaction of air – Liquid Oxygen for medical purpose- Laws of thermodynamics – Entropy – Heat engine – Carnot's cycle – Efficiency	12
ш	ELECTRICITY AND MAGNETISM Potentiometer– Principle – measurement of thermo emf using potentiometer – Magnetic field due to a current carrying conductor – Biot Savart's law – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – Types of switches in household and factories	12
IV	WAVES, OSCILLATIONS AND ULTRASONICS Simple Harmonic Motion – composition of two SHMs at right angles (periods in the ratio 1:1) – Laws of transverse vibrations of strings – Determination of AC frequency using sonometer – Ultrasound – production –Piezoelectric method – Application of ultrasonics.	12

v	DIGITAL ELECTRONICS AND DIGITAL INDIA Logic gates, OR, AND, NOT logic gates – Boolean algebra – De Morgan's theorem – verification – Overview of Government initiatives: software technological parks under MeitY (Ministry of Electronics and Information Technology), NIELIT (National Institute of Electronics & Information Technology) - Semiconductor laboratories under Dept. of Space – An introduction to Digital India.	12
	Total	60

60

Self-study	NIELIT- Semiconductor laboratories under Dept. of Space –Introduct Digital India.	ion to	2

Textbooks

- 1. Ubald Raj A, Jose Robin G, 2012. Allied Physics, Indira Publications. Marthandam.
- 2. Murugesan R, 2001. Allied Physics, S. Chand & Co., New Delhi.
- 3. Murugesan R, 2017. *Electricity and Magnetism*, S. Chand & Co., New Delhi.
- 4. Hugh D Young, Rogger A, Freedman, 2015. University Physics with Modern Physics, Pearson Publishers, Chennai.

Reference Books

- 1. Murugesan R, 2012. Properties of Matter, S. Chand & Co., New Delhi.
- 2. Mathur D S, 2010. Elements of Properties of Matter, S. Chand& Co., New Delhi.
- 3. Brijlal, Subramaniam N, Henne P S, 2008. Heat Thermodynamics and Statistical Physics, Revised Edition, S Chand & Co., New Delhi.
- 4. Ubald Raj A, Jose Robin G. 2004. Basic Electronics, Indira Publications. Marthandam.
- 5. David Halliday, Robert Resnick, Jearl Walker, 2013. Fundamentals of Physics, Wiley Publishers, India.

Web Resources

- 1. https://youtu.be/M_5KYncYNyc
- 2. https://www.youtube.com/watch?v=9mXOMzUruMQ&t=1s
- 3. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
- 4. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/

	AND PROGRAMME SPECIFIC OUTCOMES											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	1	1	1	2	3	2	2	3	1
CO2	3	3	3	1	2	2	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	2	2	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13
AVERAGE	3	3	2.8	2	2.2	2.2	2.4	3	2.8	2.8	2.8	2.6
				• •				4 -				

MAPPING WITH PROGRAMME OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER III ELECTIVE LAB COURSE I: ALLIED PHYSICS PRACTICAL FOR CHEMISTRY – I

Course	т	т	р	C	Credits	Inst.	Total		Marks	
Code	L	1	P	3	Credits	Hours	Hours	CIA	External	Total
PU233EP1	-	-	2	-	2	2	30	25	75	100

Pre-requisite:

Knowledge in basic Physics.

Learning Objectives:

- 1. To make the students more innovative, in hands on experiments.
- 2. To elucidate theory through simple experiments in physics.

	Course Outcomes	
On t	the successful completion of the course, student will be able to:	
1.	remember the basic principles of Physics through experiments.	K1
2.	interpret the handling of various instruments.	K2
3.	relate the various physical parameters for measuring properties of the given material.	K3
4.	devise the implications of working principle of logic gates.	K4
5.	estimate the Q-factors and design simple electronic circuits.	K5&K6

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Surface tension and interfacial Surface tension drop weight method
- 4. Comparison of viscosities of two liquids burette method
- 5. Determination of co-efficient of viscosity-Variable pressure head
- 6. Calibration of low range voltmeter using potentiometer
- 7. Calibration of ammeter using potentiometer.
- 8. Verification of truth tables of basic logic gates using ICs
- 9. Determination of rigidity modulus without mass using Torsional pendulum.
- 10. Verification of truth tables of AND, OR and NOT using NAND (IC 7400)
- 11. Resonance Frequency of the LCR circuit

Note: Use of digital balance is permitted

Textbooks

- 1. Ubald Raj A, Jose Robin G, 2012. Allied Physics, Indira Publications, Marthandam.
- 2. Jerry D. Wilson, Cecilia A. Hernández-Hall, 2017. *Physics laboratory experiments*, Cengage Learning publishers, Delhi.
- 3. Hugh D Young, Rogger A. Freedman, 2015. *University Physics with Modern Physics*, Pearson Publishers, Chennai.
- 4. David Halliday, Robert Resnick, Jearl Walker, 2013. *Fundamentals of Physics*, Wiley Publishers, India.

Reference Books

- 1. Jerry D, Wilson, Cecilia A. Hernández-Hall, 2003. *Experimental Physics: Modern Methods*, Cengage Learning publishers, Delhi.
- 2. Donald E, Simanek, Derek K, Senft, 2005. *Laboratory Manual for Introductory Physics*, John Wiley & Sons, United States.
- 3. Squires G L, Practical Physics, 2001. Cambridge University Press. India

- 4. Savant C J, 2014. *Experiments in Physics for Students of Science and Engineering*, Cengage Learning publishers, Delhi.
- 5. David H, Loyd, 2012. *Physics Laboratory Manual*, Cengage Learning publishers, Delhi.

Web Resources

- 1. https://www.youtube.com/watch?v=TZWk5-8R5tc
- 2. https://www.electricaldeck.com/2021/04/calibration-of-voltmeter-ammeter-wattmeter-using-potentiometer.html
- 3. https://www.youtube.com/watch?v=TeWPWBbS9tI
- 4. https://www.youtube.com/watch?v=0J1jFa8Uhpw
- 5. https://de-iitr.vlabs.ac.in/exp/truth-table-gates/theory.html

MAPPING W	ITH PROG	GRAMME	OUTCOMES
AND PROGE	RAMME S	PECIFIC	OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	1	1	1	2	3	2	2	3	1
CO2	3	3	3	1	2	2	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	2	2	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13
AVERAGE	3	3	2.8	2	2.2	2.2	2.4	3	2.8	2.8	2.8	2.6

3 – Strong, 2- Medium, 1- Low

SEMESTER III

SKIL	L ENHA	NC	EMENT	COURSE SEC	-II: AST	ROPHYSICS

Course Code	т	т	Р	c	Credits	Inst. Hours	Total	Marks		
	L	I		S			Hours	CIA	External	Total
PU233SE1	2	-	-	-	2	2	30	25	75	100

Pre-requisite: Basics of Solar Systems, Galaxies and Planets.

Learning Objectives:

- 1. To introduce principles of astrophysics describing the science of formation and evolution of stars and interpretation of various heavenly phenomena.
- 2. To provide an understanding of the physical nature of celestial bodies.

On the	Course Outcomes successful completion of the course, students will be able to:	
1.	recall the total and annular solar and lunar eclipses.	K 1
2.	summarize the different layers of the Sun and its phenomenon. \swarrow	K2
3.	articulate the basic concepts of Solar systems on planetary motion.	K3
4.	relate the distinct properties of planets revolving around the sun.	K4
5.	grade the principle of planetary motion towards science and technology.	К5

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 – Evaluate

Units	Contents	No. of Hours
I	THE SUN The Sun – A typical star – Photosphere – Limb darkening – Chromosphere – Spicules – Plages and filaments - Solar corona – The inner corona – The outer corona – The emission corona - prominences – sunspots - solar flares	6
п	SOLAR SYSTEM Comets – Nucleus – Coma – Hydrogen cloud – Dust tail – Ion tail - Asteroids – Debris – Meteors – Shooting stars – Falling stars – Meteoroids – Crater - Kuiper belt – Oort cloud - Bode's law of planetary distances	6
III	ECLIPSES Types of eclipses – Solar eclipse – Solar eclipse geometry - Total and annular solar eclipse – Lunar eclipse – Umbra – Penumbra - Total and partial lunar eclipse	6
IV	INNER PLANETS Mercury: Planet closest to the sun – Venus: Earth's twin - Earth: The water planet – Mars: The red planet	6
V	OUTER PLANETS Jupiter: The largest planet – Saturn: The ringed planet – Uranus: Neptune's twin – Neptune: The blue planet – Pluto – Dwarf planet.	6
	Total	30

Self-study Solar Corona, shooting stars, total and partial lunar eclipse, greenhouse effect

Textbooks

1. Baidyanath Basu, 2010. *An introduction to Astrophysics*, (2nd Edition), Prentice Hall of India (P) Ltd, New Delhi.

- 2. Krishnaswamy K S, 2002. Astrophysics: a modern perspective, New Age International (P) Ltd, New Delhi.
- 3. Shylaja B S, Madhusudan H. R, 1999. *Eclipse: A Celestial Shadow Play*, Universities Press Private limited, India.
- 4. Bradley W Carroll, 2017. *An introduction to modern astrophysics*, (3rd Edition), University Press, Cambridge.
- 5. Charles Keeton, 2014. Principles of Astrophysics, Springer.

Reference Books

- 1. Abhyankar K D, 2009. *Astrophysics of the solar system*, (2nd Edition), Universities press Private limited, India.
- 2. Stan Owocki, 2021. Fundamentals of Astrophysics, Cambridge University Press.
- 3. Gerardin Jeyam, 2008. *Physics Everyday*, Holy Cross College (Autonomous), Nagercoil.
- 4. Gourav Banerjee, 2021. Becoming an Astronomer: A Friendly Guide to Pursue Astronomy as a Career, Palmview Publishing, Kolkata.
- 5. Madhur Sorout, 2019. Astrophysics Simplified: A Simple Guide to the Universe, Notion Press, Chennai.

Web Resources

- 1. https://optcorp.com/blogs/telescopes-101/refractor-vs-reflector-telescopes
- 2. https://pages.uoregon.edu/jschombe/glossary/bode_titus_relation.html
- 3. https://www.timeanddate.com/eclipse/eclipse-information.html
- 4. https://pressbooks.online.ucf.edu/astronomybc/chapter/23-1-the-death-of-low-massstars/
- 5. https://science.nasa.gov/universe/galaxies/types/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

3 – Strong, 2- Medium, 1- Low

SEMESTER III / IV

SKILL ENHANCEMENT COURSE SEC – IV: DIGITAL FLUENCY

Course Code	т	т	р	р	G	Credita	Credita	Inst. Hours	Total		Marks	
Course Code	L	I	r	3	Creans	mst. nours	Hours	CIA	External	Total		
UG23CSE2	2	-	-	-	2	2	30	50	50	100		

Pre-requisite: Basic computer knowledge

Learning Objectives:

1. To provide a comprehensive suite of productivity tools that enhance efficiency

2. To build essential soft skills that are needed for professional success.

Course Outcomes

On t	the successful completion of the course, students will be able to:	
1.	work with text, themes and styles	K1
2.	produce a mail merge	K2
3.	secure information in an Excel workbook	K2
4.	perform documentation and presentation skills	K2, K3
5.	add special effects to slide transitions	K3

K1 - Remember; **K2** - Understand; **K3** – Apply

Units	Contents	No. of Hours
I	Microsoft Word 2010: Starting Word 2010 - Understanding the Word Program Screen - Giving Commands in Word - Using Command Shortcuts – Document: Creating - Opening - Previewing - Printing and Saving. Getting Started with Documents: Entering and Deleting Text - Navigating through a Document - Viewing a Document. Working with and Editing Text: Spell Check and Grammar Check- Finding and Replacing Text - Inserting Symbols and Special Characters – Copying, Moving, and Pasting Text.	6
Ш	Formatting Characters and Paragraphs : Changing Font Type, Font Size, Font Color, Font Styles and Effects, Text Case, Creating Lists, Paragraph Alignment, Paragraph Borders and Shadings, Spacing between Paragraphs and Lines. Formatting the Page: Adjusting Margins, Page Orientation and Size, Columns and Ordering, Headers and Footers, Page Numbering. Working with Shapes, Pictures and SmartArt: Inserting Clip Art, Pictures and Graphics File, Resize Graphics, Removing Picture's Background, Text Boxes, Smart Art, Applying Special Effects. Working with Tables: Create Table, Add and delete Row or Column, Apply Table Style - Working with Mailings.	6
ш	Microsoft Excel 2010: Creating Workbooks and Entering Data: Creating and Saving a New Workbook - Navigating the Excel Interface, Worksheets, and Workbooks - Entering Data in Worksheets - Inserting, Deleting, and Rearranging Worksheets. Formatting Worksheets: Inserting and Deleting Rows, Columns and Cells - Formatting Cells and Ranges - Printing your Excel Worksheets and Workbooks. Crunching Numbers with Formulas and Functions: Difference between Formulae and Functions - Applying Functions. Creating Powerful and Persuasive Charts: Creating, Laying Out, and Formatting a Chart.	6
IV	Microsoft PowerPoint 2010: Creating a Presentation - Changing the Slide Size and Orientation - Navigating the PowerPoint Window - Add content to a Slide - Adding, Deleting, and Rearranging Slides - Using views to work on Presentation. Creating Clear and Compelling Slides: Planning the Slides in Presentation - Choosing Slide Layouts to Suit the Contents - Adding Tables, SmartArt, Charts, Pictures, Movies,	6

	Sounds, Transitions and Animations - Slideshow.	
v	Digital Platforms: Graphic Design Platform: Canva - Logo Making, Invitation Designing. E-learning Platform: Virtual Meet – Technical Requirements, Scheduling Meetings, Sharing Presentations, Recording the Meetings. Online Forms: Creating Questionnaire, Publishing Questionnaire, Analyzing the Responses, Downloading the Response to Spreadsheet.	6
	Total	30

Self-study Parts of a computer and their functions

Textbook:

Anto Hepzie Bai J. & Divya Merry Malar J.,2024, Digital Fluency, Nanjil Publications, Nagercoil.

Reference Books:

- 1. Steve Schwartz, 2017, Microsoft Office 2010 for Windows, Peachpit Press.
- 2. Ramesh Bangia, 2015, Learning Microsoft Office 2010, Khanna Book Publishing Company.
- 3. Bittu Kumar, 2018, Mastering MS Office, V & S Publishers.
- 4. James Bernstein, 2020, Google Meet Made Easy, e-book, Amazon.
- 5. Zeldman, Jeffrey, 2005, Web Standards Design Guide, Charles River Media.

Web Resources:

- 1. https://www.youtube.com/watch?v=oocieLn6umo
- 2. https://www.youtube.com/watch?v=pPSwbK4_GdY
- 3. https://www.youtube.com/watch?v=DKAiSDhU4To
- 4. https://www.youtube.com/watch?v=sbeyPahs-ng
- 5. https://www.youtube.com/watch?v=fACEzzmXelY

SEMESTER III

SPECIFIC VALUE-ADDED COURSE: FUNDAMENTALS OF MS- EXCEL

Course Code	т	т	р	C	Credita	Inst Hound	Total		Marks	
	L	I	r	3	Creans	Inst. Hours	Hours	CIA	External	Total
PU233V01	2	-	-	-	1	2	30	25	75	100

Pre-requisite:

Basic knowledge of MS- Excel.

Learning Objectives:

- 1. To understand the fundamental principles of Microsoft Excel and its features.
- 2. To apply knowledge of Excel in data analysis.
- **Course Outcomes**

On the su	accessful completion of the course, students will be able to:	
1.	illustrate Microsoft Excel and its features.	K1
2.	understand the formula functions – sum - average, if, count, max, min, proper, upper, lower, using autosum.	К2
3.	apply Excel features for designing and integrating calculations.	K3
4.	analyse spreadsheet enhanced functionality.	K4
5.	evaluate table data analysis.	K5
	- Remember- K2- Understand- K3 – Apply- K4- Analyze- K5- Eval	

Units	Contents	No. of Hours
I	FUNDAMENTALS OF MS EXCEL MS Excel software - Spreadsheet window pane - Title Bar - Menu Bar - Standard Toolbar - Formatting Toolbar - the Ribbon -File Tab and Backstage View - Formula Bar - Workbook Window - Status Bar.	6
II	RANGES AND FUNCTIONS Using Ranges - Selecting Ranges - Entering Information Into a Range - Using AutoFill Creating Formulas- Formula Functions – Sum - Average, if, Count, max, min, Proper, Upper, Lower, Using AutoSum.	6
III	PIVOT TABLES Sorting, Filter - Text to Column - Data Validation PivotTables - Creating PivotTables - Manipulating a PivotTable - Using the PivotTable Toolbar - Changing Data Field – Properties.	6
IV	WORKSHEETS Moving between Spreadsheets, Selecting Multiple Spreadsheets - Inserting and Deleting Spreadsheets -Copying and Pasting Data between Spreadsheets - Hiding - Protecting worksheets.	6
v	SPECIAL TECHNIQUES Concatenate, Vlookup, Hlookup, Match, Countif, Text, Trim Spreadsheet Charts- Different types of chart, Formatting Chart Objects - Showing and Hiding the Data.	6
	Total	30

Self-study S

Spreadsheets, Data analysis

Textbooks

- 1. Ken Bluttman, 2020. Microsoft Excel Formulas & Functions for Dummies, Wiley, USA.
- 2. M.L. Humphrey, 2019. Intermediate Excel: 2 (Excel Essentials), Humphrey Publishers, UK.

Reference Books

- 1. M.L. Humphrey, 2019. Excel for Beginners, Humphrey Publishers, UK.
- 2. Lokesh Lalwani, 2019. Excel 2019 All-In-One: Master the new features of Excel 2019 / Office 365, BPB Publications, India.
- 3. Ritu Arora, 2023. Mastering Advanced Excel, BPB Publications, India.
- 4. Jordan Goldmeier, 2014. Advanced Excel Essentials, Apress, UK.
- 5. Alan Murray, 2022. Advanced Excel Formulas: Unleashing Brilliance with Excel Formulas, Apress, UK.

Web Resources

- 1. https://excel-practice-online.com/
- 2. https://intellipaat.com/ course
- 3. https://www.simplilearn.com/tutorials/excel-tutorial/excel-basics
- 4. https://support.microsoft.com/en-us/office/basic-tasks-in-excel-dc775dd1-fa52-430f-9c3c-d998d1735fca
- 5. https://corporatefinanceinstitute.com/resources/excel/basic-excel-formulasbeginners/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	3	1	2	3	3	3	3	3	1	2		
CO2	3	3	3	2	3	3	3	3	3	3	2	3		
CO3	3	2	3	3	1	3	3	3	2	3	3	1		
CO4	3	3	3	2	2	3	3	3	3	3	2	2		
CO5	3	2	3	3	2	3	3	3	2	3	3	3		
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11		
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2		

3 – Strong, 2- Medium, 1- Low

SEMESTER III SPECIFIC VALUE-ADDED COURSE: APPLICATIONS OF LASER

Course Code	т	т	Р	C	Credits	Inst. Hours Hours Hours				
Course Code	L	I	r	ð	Creans	Inst. nours	Hours	CIA	External	Total
PU233V02	2	-	-	•	1	2	30	25	75	100

Pre-requisite:

Basic knowledge of Lasers.

Learning Objectives:

1.To understand the fundamental principles of Lasers, including their operation, types, and characteristics.

2.To apply knowledge of the basics of lasers and their diversified applications

	Course Outcomes	
On the su	accessful completion of the course, students will be able to:	
1.	identify Laser types, principles, and applications in modern technology	K1
2.	understand the working mechanism of lasers.	K2
3.	use the principle of lasers in designing and integrating Lasers into appliance systems.	К3
4.	contrast different types of lasers, laser instrumentation and their applications.	K4
5.	evaluate laser systems, their characteristics and diversified applications including industry, medicine and astronomy.	К5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

Units	Contents	No. of Hours
I	FUNDAMENTALS OF LASER Basic principles-Spontaneous and stimulated emission – Einstein'scoefficient – pumping mechanism- optical, electrical and laser pumping – population inversion	6
II	TYPES OF LASER Solidstatelaser- rubylaser- Nd:YAG laser- Nd:Glass laser- semiconductor laser- intrinsic semiconductor laser - doped semiconductorlaser	6
III	APPLICATIONS OF LASER IN INDUSTRY Application of laser in metrology – optical communication – material processing - laser instrumentation of material processing- powder feeder- Laser instruments	6
IV	APPLICATIONS OF LASER IN MEDICINE Medical application in eye related surgeries– Laser instrumentation for surgeries– Monochromaticity- Spatial and temporal coherence- rightness- Focus ability- ultra-short pulse generation- Peak Power	6
v	APPLICATIONS OF LASER IN ASTRONOMY Laser resonators- General conditions of stability- Plane and spherical mirror cavities- Modes and optical resonators- Gaussian beam propagation- laser telescopes in optical and radio space instruments	6
	Total	30

Self-study

Semiconductor laser, Conditions of stability

Textbooks

- 1. Laud Metha B B, 2013. *Laser and Non-linear Optics*, New Age International Publications, (3rd Edition), NewDelhi.
- 2. Avadhunulu A, 2020, *An Introduction to laser, theory and applications* M.N.S., Chand&Co, NewDelhi
- 3. Anokh Singh, Chopra A K, 2013. *Principles of communication Engineering*, S. Chand & CoLtd, New Delhi.
- 4. Chitode J S, 2020. *Digital Communications*, Unicorn publications, Chennai.
- 5. Senior John, 2010. Laser Communications, Pearson Education, India.

Reference Books

- 1. Dennis Roody, Coolen, 1995. *Electronic communications*. Prentice Hall of India, (4th Edition), New Jersey: Prentice Hall.
- 2. Ohba R, 2006. Advanced electronics communication systems. New York: John Wiley & Sons.
- 3. Pallas Areny R, Webster J G, 1999. *Electronics communications*, New York: John Wiley & Sons.
- 4. Wayne Tomasi, 1998. Advanced Electronics communication System, (4th edition), Prentice Hall of India, India.
- 5. Salivahanan, S , 2015. *Laser Devices and Circuits*, Tata McGraw-Hill Publishing Company Limited, New Delhi.

Web Resources

- 1. https://www.geeksforgeeks.org/digital-electronics-laser-tutorials/
- 2. https://www.polytechnichub.com/laser instruments/
- 3. http://nptel.iitm.ac.in/laser applications./
- 4. http://web.ewu.edu/
- 5. http://nptel.iitm.ac.in/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2
			2	C 4	0	3 4 1	. 1	т				

3 – Strong, 2- Medium, 1- Low

SEMESTER III SPECIFIC VALUE-ADDED COURSE: MEDICAL IMAGING

Course Code	т	т	р	S	Credita	Inst Hound	Total	Marks				
	L	I	r		Creans	Inst. nours	Hours	CIA	External	Total		
PU233V03	2	-	-	•	1	2	30	25	75	100		

Pre-requisite:

Basic knowledge of medical physics.

Learning Objectives

- 1. To understand the fundamental principles of instruments like ECG,EEG including their operation, types, and characteristics.
- 2.To apply knowledge of the basics of medical imaging, diagnostic specialties, operation theatre and their expanded applications.

Course Outcomes

On the s	uccessful completion of the course, students will be able to: 🛛 🔨 📎	1
1.	identify medical imaging types, principles, and applications in modern	K1
	technology.	
2.	understand bio-potential based instrumentation.	K2
3.	apply principles of ECG, EEG into medical systems.	K3
4.	analyse medical imaging instrumentation and their applications.	K4
5.	evaluate medical systems, their characteristics and diversified	К5
	applications	

K1- Remember- K2- Understand- K3 – Apply- K4- Analyze- K5- Evaluate

Units	Contents	No. of Hours
I	DESIGN OF MEDICAL INSTRUMENTS Components of bio-medical instrumentation – electrodes – electrode potential – metal microelectrode – depth and needle electrodes – types of surface electrode – the pH electrode.	6
II	BIO-POTENTIAL BASED INSTRUMENTATION Electrocardiography (ECG) – origin of cardiac action potential - ECG lead configuration –block diagram of ECG recording set up– Electroencephalography (EEG)	6
III	APPLICATIONS OF MEDICAL SCANNERS Medical imaging in nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner	6
IV	APPLICATIONS OF MAGNETIC RESONANCE IMAGING MRI principle and instrumentation- ultrasonic imaging systems – construction of transducer – display modes – image intensifiers – angiography – applications	6
v	OPERATION THEATRE AND SAFETY Diathermy –electrosurgical diathermy– shortwave, microwave, ultrasonic diathermy – ventilators – servo-controlled systems– pocket type radiation alarm – thermo-luminescence dosimeter.	6
	Total	30

Self-study MRI, ECG

Textbooks

- 1. Leslie Cromwell B.B., 2015. *Biomedical Instrumentation and measurement*, New Age International Publications, NewDelhi.
- 2. John R. Cameron, James G. Skofronick., 1985, *Medical Physics* M.N.S., Chand & Co, New Delhi.
- 3. Ohba R, 2006. *Magnetic resonance imaging*, John Wiley & Sons, New York
- 4. Pallas Areny R, Webster J G, 1999. *Operation theatre and safety*, John Wiley & Sons, New York.
- 5. Wayne Tomasi, 1998. Advanced Electronics communication System, (4th Edition), Prentice Hall of India, India.

Reference Books

- 1. Dennis Roody, Coolen. 1995. *Electrosurgical diathermy*. Prentice Hall of India, IV edition, New Jersey: Prentice Hall.
- 2. Salivahanan S , 2015, *Medical Devices and Circuits*, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 3. Anokh Singh, Chopra A K, 2013. *Principles of medical imaging*, S. Chand & Co Ltd, New Delhi.
- 4. Chitode J S, 2020. Digital imaging, Unicorn publications, Chennai.
- 5. Senior John, 2010. ECG, Pearson Education, India.

Web Resources

- 2. https://www.geeksforgeeks.org/Medical Devices and Circuits -tutorials/
- 3. https://www.polytechnichub.com/medical instruments/
- 4. http://nptel.iitm.ac.in/Digital imaging /
- 5. http://web.ewu.edu/
- 6. http://nptel.iitm.ac.in/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

3 – Strong, 2- Medium, 1- Low

SEMESTER III / V

SELF LEARNING COURSE SLC: PUBLIC SERVICE EXAMINATION: PHYSICS-I

Course Code	т	т	Р	S	Credits	Inst.	Inst. Total		Marks			
Course Code	L	I			Creans	Hours	Hours	CIA	External	Total		
PU233SL1/ PU235SL1	-	-	-	-	1	-	-	25	75	100		

Pre- requisite:

Knowledge based on mechanics, wave propagation, optics, electrostatics and magnetostatics.

Learning Objectives:

- 1. To gain knowledge in the behaviour of light waves and understand how these phenomena contribute to the formation of images and optical instruments.
- 2. To learn the contemporary topics in optics and understand these technologies and their practical applications.

	Course Outcomes							
On the	On the successful completion of the course, students will be able to:							
1.	remember and understand the fundamental principles and core concepts in mechanics, electrostatics, optics and magnetostatics.	K1& K2						
2.	apply the mathematical and analytical techniques to solve problems related to mechanics principles- optics- electro and magnetostatics.	К3						
3.	apply principles of geometrical optics to analyze the behavior of light rays in various optical systems- such as lenses- mirrors- and optical fibers.	K3						
4.	relate abstract concepts in physics and apply them to real- world phenomena- including understanding the principles behind various physical phenomena and their applications	K4						
5.	evaluate circuit problems involving series and parallel connections	K5						

K1- Remember: K2- Understand: K3 – Apply: K4- Analyse: K5- Evaluate: K6– Create

	inder, K2- Understand, K5 – Appry, K4- Anaryse, K5- Evaluate, K0– Create
Units	Contents
	MECHANICS OF PARTICLES AND CONTINUOUS MEDIA
I	Laws of motion-conservation of energy and momentum-applications to rotating frames-centripetal and Coriolis accelerations- Motion under a central force- Conservation of angular momentum-Kepler's laws-Fields and potentials- Gravitational field and potential due to spherical bodies-Gauss and Poisson equations-gravitational self- energy-Two- body problem-Reduced mass- Rutherford scattering- Centre of mass a laboratory reference frames. Elasticity- Hooke's law and elastic constants of isotropic solids and their inter- relation- Streamline (Laminar) flow-viscosity-Poiseuille's equation-Bernoulli's equation- Stokes' lawand applications. Michelson-Morley experiment and its implications- Lorentz transformations-length contraction-time dilation- the addition of relativistic velocities- aberration- and Doppler effect- mass- energy relation
П	WAVES AND OPTICS Simple harmonic motio damped oscillation- forced oscillation and resonance- Beats- Stationary waves in a string- Pulses and wave packets- Phase and group velocities- Reflection and Refraction from Huygens' principle. Laws of reflection and refraction from Fermat's principle- Matrix method in paraxial optics- thin lens formula- nodal planes- system of two thin lenses- chromatic and spherical aberrations. Interference of Light- Young's experiment- Newton's rings- interference by thin films- Michelson interferometer- Multiple beam interference- and Fabry- Perot interferometer. Fraunhofer diffraction- single slit- double slit- diffraction

	grating- resolving power- Diffraction by a circular aperture and the Airy								
	pattern- Fresnel diffraction: half- period zones and zone plates- circular								
	aperture								
	MODERN OPTICS								
	Production and detection of linearly and circularly polarised light- Double								
	refraction- quarter wave plate- Optical activity- Principles of fibre optics-								
III	attenuation- Pulse dispersion in step index and parabolic index fibres- Material								
111	dispersion- single mode fibres- Lasers- Einstein A and B coefficients- Ruby								
	and He- Ne lasers- Characteristics of laser light- spatial and temporal coherence-								
	Focusing of laser beams- Three- level scheme for laser operation- Holography								
	and simple applications.								
	ELECTROSTATICS AND MAGNETOSTATICS								
	Laplace and Poisson equations in electrostatics and their applications- Energy of								
	a system of charges- multiple expansion of scalar potential- Method of images								
IV	and its applications- Potential and field due to a dipole- force and torque on a								
1.4	dipole in an external field- Dielectrics- polarization- Solutions to boundary-								
	value problems- conducting and dielectric spheres in a uniform electric field-								
	Magnetic shell- uniformly magnetized sphere- Ferro magnetic materials-								
	hysteresis- energy loss.								
	CURRENT ELECTRICITY								
	Kirchhoff's laws and their applications- Biot- Savart law- Ampere's law-								
V	Faraday's law- Lenz's law- Self- and mutual- inductances- Mean and r m s								
	values in AC circuits- DC and AC circuits with R- L- and C components-								
	Series and parallel resonances- Quality factor- Principle of transformer.								
Toythooks									

Textbooks

- 1. Palanisamy P K, 2012. *Engineering Physics*, (1st Edition), India: Scitech Publications (India) Pvt. Ltd.
- 2. Gupta A B, 2015. *Modern Physics*, (2nd Edition), Books and Allied (p) Ltd, Kolkatta.
- 3. Subrahmanyam Brijilal N, 2004. *A text book of optics*, (22nd Edition), S.Chand and Company Pvt. Ltd, New Delhi.

Reference Books

- 1. Arthur Beiser, 2006. *Concepts of Modern Physics*. (6th Edition), Tata McGraw Hill, s India.
- 2. Subrahmanyam Brijilal N, Avadhanulu M N, 2015. A text book of Optics. (25th Edition), S.Chand and Company Pvt. Ltd, Newdelhi.
- 3. David J Griffiths, 2004. *Introduction to Electrodynamics*. (3rd Edition), Prentice Hall of India Private Ltd.
- 4. Reitz, 1987. *Foundations of Electromagnetic Theory*, (3rd Edition), Narosa Publishing House, New Delhi.
- 5. Nayyar N K, 2009. Unique Quintessence of Physics (For M.Sc. Entrance Examinations (All Universities) & amp; other Competitive Examinations), Unique Publishers, New Delhi.

Web Resources

- 1. https://www.berkshire.com/learning-center/delta-pfacemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.com/ watch?time_continue=318&v=D38BjgUdL5U&feature=emb_logo
- 2. https://www.youtube.com/watch?v=JrRrp5F-Qu4
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm
- 5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects

	AND I KOGRAMME SI ECHTIC OUTCOMES											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	2	3	3	3	3	3	2
CO2	3	3	2	3	3	3	3	3	3	3	3	2
CO3	3	3	2	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	3	3	3	3	3	3	3	2
CO5	3	3	2	3	3	3	3	3	3	3	3	2
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2
				2								

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER IV CORE COURSE IV: OPTICS AND SPECTROSCOPY

Course Code	т	т	Р	S	Credita	Inst Hound	Total		Marks	
Course Code	L	I	P	B	Credits	Inst. Hours	Hours	CIA	External	Total
PU234CC1	5	-	I	I	5	5	75	25	75	100

Pre-requisite:

Basic knowledge on wave and ray optics, spectroscopy.

Learning Objectives:

- 1. To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics and explain the behaviour of light in different mediums.
- 2. To comprehend the variations in the major phenomena interference, diffraction, and polarization and to use the understanding in day-to-day activities.

Course Outcomes

On the s	On the successful completion of the course, students will be able to:						
1	outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces.	K1					
2	understand the wave nature of light through working of interferometer.	K2					
3	apply the knowledge of nature of light through diffraction techniques and apply mathematical principles to analyse the optical instruments.	K3					
4	categorise basic formulation of polarization and appraise its usage in industries.	K4					
5	evaluate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries	K5					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

Units	Contents	No. of Hours
I	LENS AND PRISMS Lens maker's formula – Equivalent focal length of two thin lenses separated by a distance. Aberrations: Spherical aberration in a lens – Methods of minimizing Spherical aberration-condition for minimum spherical aberration – Chromatic aberration. Prism: Dispersion, deviation, Achromatic combination of Prisms – Dispersion without deviation –Deviation without dispersion – applications – Direct vision spectroscope.	15
ш	INTERFERENCE Division of wave front – Fresnel's biprism – fringes with white light – division of amplitude: interference in thin films due to (i) reflected light (ii) transmitted light – air wedge – Newton's rings. Michelson's interferometer – applications, (i) determination of the wavelength of a monochromatic source of light, (ii) determination of the wavelength and separation D_1 and D_2 lines of sodium light.	15
ш	DIFFRACTION Fresnel's assumptions – zone plate – action of zone plate for an incident spherical wave front – differences between a zone plate and a convex lens – Fresnel type of diffraction – diffraction pattern due to a straight edge– Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit – plane diffraction grating– experiment to determine wavelengths.	15
IV	POLARISATION Polarizer and analyser – double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals – Polaroids and applications – Circularly and elliptically polarized light – quarter wave	15

	plate – half wave plate – Production and detection of circularly and elliptically polarized lights – Fresnel's explanation.	
v	SPECTROSCOPY Infra-red spectroscopy-Near infra-red and far infra-red –Properties –IR source- IR Detectors- IR spectrophotometer – applications -Scattering of light – Raman effect - Experimental study of Raman effect –applications – Ultraviolet and visible spectroscopy –properties – UV source – UV Detectors- Spectrographs for UV regions- Applications.	15
	Total	75

Self-study Rayleigh's criterion for resolution; Half wave plate; Plane diffraction grating

Textbooks

- 1. Subramaniam N, Brijlal. 2014. Optics, (25th Edition), S.Chand&Co, New Delhi.
- 2. Gupta S L, Kumar V, Sharma R.C.2017. *Elements of Spectroscopy*, (13th Edition), Pragati Prakashan, Meerut.
- 3. Aruldhas G, 2000. *Molecular Structure and Spectroscopy*, (2nd Edition), PHI Pvt Ltd, New Delhi.
- 4. Sasikumar P R, 2012. Photonics, PHI Pvt Ltd, New Delhi.
- 5. Rajagopal K, 2008. Engineering Physics, PHI Pvt Ltd, New Delhi.

Reference Books

- 1. Agarwal B.S. 2011. Optics, Kedernath Ramnath Publishers, Meerut.
- 2. Sathyaprakash. 1990. Optics, (7th Edition), Ratan Prakashan Mandhir, New Delhi.
- 3. Banwell C.N.2006.*Introduction to Molecular Spectroscopy*, (4th Edition), TMH Publishing Co, New Delhi.
- 4. AjoyGhatak. 2009. Optics, (4th Edition), PHI Pvt Ltd, New Delhi.
- 5. Singh, Agarwal, 2002. Optics and Atomic Physics, (9th Edition), PragatiPrakashan Meerut.
- 6. Halliday D, Resnick R, Walker J.2001. *Fundamentals of Physics*, (6th Edition), Willey, New York.
- 7. Jenkins A, Francis, White. 2011. Fundamentals of Optics, (4th Edition), McGraw Hill Inc., New Delhi.

Web Resources

- 1. https://science.nasa.gov/ems/
- 2. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472
- 3. https://science.nasa.gov/ems/
- 4. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-
- 5. https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMMESPECIFICOUTCOMES

	I KOOKAMINIESI ECH ICOU I COMES											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	1	3	3	3	3	3	2
CO2	3	3	2	3	3	1	3	3	3	3	3	2
CO3	3	3	2	3	3	1	3	3	3	3	3	2
CO4	3	3	2	3	3	1	3	3	3	3	3	2
CO5	3	3	2	3	3	1	3	3	3	3	3	2
TOTAL	15	15	10	15	15	5	15	15	15	15	15	10
AVERAGE	3	3	2	3	3	1	3	3	3	3	3	2

3 – Strong, 2- Medium, 1- Low

SEMESTER IV CORE LAB COURSE IV: GENERAL PHYSICS LAB IV

Course Code	т	т	Р	S	Credita	Inst. Hours		Marks			
Course Code	L	I			Credits	mst. nours	Hours	CIA	External	Total	
PU234CP1	-	-	3	-	3	3	45	25	75	100	

Pre-requisite:

Knowledge on basic Physics, Optics and Mathematics.

Learning Objectives:

- 1. To understand the basic concepts of electromagnetic radiation and their behavior in encounters different mediums, including the principles behind mirrors and lenses
- 2. To comprehend the principles of interference, diffraction, and polarization.

On the successful completion of the course, students will be able to:							
1.	identify the dual nature of light, understanding it as both a wave and a particle.	K1					
2.	understand and explore nonlinear optics, laser spectroscopy, interferometry, and laser-based measurements.	K2					
3.	use the optical principles involved in the different medium including the principles behind mirrors and lenses.	K3					
4.	devise light paths through lenses, grating and mirrors.	K4					
5.	prioritize the applications problems related to laser physics and develop a prototype.	K5 & K6					
171 D							

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

Contents (Any Eight experiments)

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of resolving power of grating
- 7. Determination of refractive index using Laser.
- 8. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 9. Determination of resolving power of telescope
- 10. Verification of Newton's formula for a lens separated by a distance.
- 11. Determination of refractive index of a given liquid by forming liquid lens
- 12. Determination of resolving power of Diffraction grating using Laser
- 13. Determination of thickness of wire using Laser.

Textbooks

- 1. Ouseph C, Rao U J, Vijayendran V, 2007. *Practical Physics and Electronics*, S. Viswanathan, Pvt., Ltd. Chennai.
- 2. Arora C L, 2001. B.Sc. Practical Physics, S. Chand Publishing, New Delhi.
- 3. Srinivasan M N, Balasubramanian S, Ranganathan R, 2013. A Textbook of Practical *Physics*, S. Chand Publishing, New Delhi.
- 4. Wood L, Sladjana, 2017. *General Physics Lab Manual*, Volume Two (3rd Edition) American Press, United States.
- 5. Harnam Singh, 2000.B.Sc. Practical Physics, S. Chand Publishing, New Delhi.

Reference Books

1. Shukla R K, 2007. *Practical Physics*. New Age International (P) Limited, Publishers. India.

- 2. Ware M J, Peatross J, 2015. *Physics of Light and Optics* (Black & White Brigham Young University, Department of Physics, United States.
- 3. James J F, 2014. An Introduction to Practical Laboratory Optics, Cambridge University Press, United Kingdom.
- 4. Meschede D, 2017. Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics, Wiley, Purcell Germany.
- 5. James J F, 2014. An Introduction to Practical Laboratory Optics, Cambridge University Press, United Kingdom.

Web Resources

- 1. https://youtu.be/oRch7irmLvo?si=GGBBqt6w9harEEVW
- 2. https://youtu.be/_whtX5uXzb4?si=SIUyPIJtoBjqGJq0
- 3. https://youtu.be/Su8TvWW-j0g?si=XUNsSeh9JiyZdEmX
- 4. https://youtu.be/0FxfmBLN31s?si=JHRiqmgOR16sGPof
- 5. https://youtu.be/br6LLJrqYtI?si=Yg1O9ZjxcYe5Knwd

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	M D I ROOK MINE SI LEITIE OUTCOMES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	2	3	3	2	3	3	3	3	3	2	
CO2	3	3	2	3	3	3	3	3	3	3	3	2	
CO3	3	3	2	3	3	2	3	3	3	3	3	2	
CO4	3	3	2	3	3	3	3	3	3	3	3	2	
CO5	3	3	2	3	3	3	3	3	3	3	3	2	
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10	
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2	
			2	14	A N	1.	1 T						

3 – Strong, 2- Medium, 1- Low

SEMESTER IV

ELECTIVE COURSE IV: ALLIED PHYSICS FOR CHEMISTRY – II

Course Code	т	т	р	G	Credita	Inst Hound	Total		Marks	
Course Code	L	I	r	Э	Creans	Inst. nours	Hours	CIA	External	Total
PU234EC1	4	I	-	I	3	4	60	25	75	100

Pre-requisite:

Basic knowledge of physics principles, atoms, semiconductors.

Learning Objectives:

- 1. To obtain an all-encompassing comprehension of the basic ideas of Physics.
- 2. To analyse the fundamental ideas behind optics, electronics, relativity, and quantum physics.

	Course Outcomes	
On th	ne successful completion of the course, students will be able to:	
1.	explain the notions of interference, diffraction and polarization using principles of superposition of waves.	K1
2.	understand the basic foundation of different atom models and periodic classification of elements	K2
3.	apply the basic concepts of relativity like inertial frames and get an overview of research projects of National and International importance.	K3
4.	relate the properties of nuclei, nuclear forces, structure of atomic nucleus and nuclear models.	K4
5.	defend the working of semiconductor devices like junction diode, Zener diode and practical devices.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

Unit	Contents	No. of Hours
I	OPTICS Interference – interference in thin films –colours of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double refraction – Brewster's law – optical activity –Application in sugar industry	12
п	ATOMIC PHYSICS Atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Stark effect – Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation	12
ш	NUCLEAR PHYSICS Nuclear models – liquid drop model - shell model – magic numbers – nuclear energy – mass defect – binding energy curve – Natural radioactivity – half life – mean life – nuclear fission and Fusion – comparison –energy released in fission– thermonuclear reactions	12
IV	NUCLEAR REACTORS Chain reaction – Controlled chain reaction – uncontrolled chain reaction – Atom bomb – nuclear reactor – Construction and Working – breeder reactor – types – Introduction to Department of atomic energy (DAE) – International atomic energy agency (IAEA)	12

SEMICONDUCTOR PHYSICS

P-N junction diode - Forward and reverse biasing - characteristic of diode -12 Zener diode - Characteristic of Zener diode - voltage regulator - USB cell phone charger – Introduction to e-vehicles and EV charging stations Total 60

Self-study Optical activity – Application in sugar industry

Textbooks

v

- 1. Murugesan R, 2005. Allied Physics, S. Chand & Co, New Delhi.
- 2. Thangaraj K, Jayaraman D, 2004. Allied Physics, Popular Book Depot, Chennai.
- 3. Gupta A B, 2015. *Modern Physics*, (2nd Edition), Kolkatta Books and Allied (p) Ltd.
- 4. Hugh D Young, Rogger A, Freedman, 2015. University Physics with Modern Physics, Pearson Publishers, Chennai.
- 5. David Halliday, Robert Resnick, Jearl Walker, 2013. Fundamentals of Physics, Wiley Publishers. India.

Reference Books

- 1. Brijlal N, Subramanyam, 2002. Textbook of Optics, S. Chand & Co, New Delhi.
- 2. Murugesan R, 2005. Modern Physics, S. Chand & Co, New Delhi.
- 3. Ubald Raj A, Jose Robin G, 2004. Basic Electronics, Indira Publications. Marthandam.
- 4. Thomas L Floyd, 2017. Digital Fundamentals, (11th Edition), Universal Book Stall. New Delhi.
- 5. Metha V K, 2004. Principles of electronics, (6th Edition), S.Chand and Company. New Delhi.

Web Resources

- 1. https://www.berkshire.com/learning-center/delta-pfacemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.com/ watch?time continue=318&v=D38BjgUdL5U&feature=emb logo
- 2. https://www.youtube.com/watch?v=JrRrp5F-Ou4
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm
- 5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects

	_	A	ND PI	ROGR	AMM	E SPE	ECIFI	C OUT	COMES	5		
	PO	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	1	1	1	2	3	2	2	3	1
CO2	3	3	3	1	2	2	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	3	3	3	2	3
CO4	3	3	3	3	2	3	2	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13
AVERAGE	3	3	2.6	2	2.2	2.4	2.4	3	2.8	2.8	2.6	2.6

MAPPING WITH PROGRAMME OUTCOMES

3–Strong, 2-Medium, 1-Low

SEMESTER IV ELECTIVE LAB COURSE II: ALLIED PHYSICS PRACTICAL FOR CHEMISTRY II

Course Code	т	т	р	C	Credita	Inst Hound	Total	Marks			
Course Code	L	1	r	3	Creans	Ilist. Hours	Hours	CIA	External	Total	
PU234EP1	-	-	2	-	2	2	30	25	75	100	

Prerequisite:

Basic Knowledge in physics experiments.

Learning Objectives:

- 1. To apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves.
- **2.** To set up experimentation for verifying theories, to do error analysis and correlate results.

Course Outcomes

On tl	he successful completion of the course, students will be able to:	
1	identify the nature of monochromatic light and its diffraction and	K1
1.	interference phenomenon.	NI NI
2.	understand the concept of frequency measurements.	K2
3.	use the physical principle involved in the various instruments to perform	К3
5.	experiments.	KJ
4.	devise scientific method and examine it in practice.	K4
5.	defend logic theorems and design simple logic circuits.	K5 & K6

K1 - Remember; K2 – Understand; K3 - Apply; K4 – Analyse; K5- Evaluate; K6-Create

Contents

(Any Eight Experiments)

- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Verification of Newton's law of cooling
- 4. Specific heat capacity of liquid by cooling method
- 5. Determination of AC frequency using sonometer
- 6. Thermal conductivity of poor conductor using Lee's disc
- 7. Construction of AND, OR, NOT gates using diodes and transistor
- 8. Characteristics of Zener diode
- 9. Determination of g using compound pendulum.
- 10. Determination of refractive index of prism using spectrometer.
- 11. Construction of Zener/IC regulated power supply

Textbooks

- 1. Ubald Raj A, Jose Robin G, 2012. Allied Physics. Indira Publications, Marthandam.
- 2. Donald E Simanek, Derek K Senft, 2005. *Laboratory Manual for Introductory Physics*, John Wiley & Sons, United States.
- 3. David H Loyd, 2012. *Physics Laboratory Manual*, Cengage Learning publishers, Delhi.
- 4. David Halliday, Robert Resnick, Jearl Walker, 2013. *Fundamentals of Physics*, Wiley Publishers, India.
- 5. Hugh D Young, Rogger A. Freedman, 2015. *University Physics with Modern Physics*, Pearson Publishers, Chennai.

Reference Books

1. Jerry D Wilson, Cecilia A. Hernández-Hall, 2017. *Physics laboratory experiments*, Cengage Learning publishers, Delhi.

- 2. Squires G L, 2001. Practical Physics, Cambridge University Press. India
- 3. Savant C. J, 2014. *Experiments in Physics for Students of Science and Engineering*, Cengage Learning publishers, Delhi.
- 4. Douglas C Giancoli, 2018. *Physics for Scientists and Engineers with Modern Physics*, Pearson Publishers, Chennai.
- 5. Jerry D Wilson, Cecilia A Hernández-Hall, 2003. *Experimental Physics: Modern Methods*, Cengage Learning publishers, Delhi.

Web Resources

- 1. https://study.com/academy/lesson/newton-s-law-of-cooling
- 2. https://byjus.com/physics/zener-diode/
- 3. https://www.youtube.com/watch?v=zFRWbDpDvtE
- 4. https://www.youtube.com/watch?v=XuXUtGN928U
- 5. https://v1.nitj.ac.in/physics/Downloads/lee%20method7831.pdf

MAPPING WITH PROGRAMME OUTCOMES

	AND I ROORANNIE SI ECH IC OUICOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	2	3	3	2	3	3	3	3	3	2		
CO2	3	3	2	3	3	3	3	3	3	3	3	2		
CO3	3	3	2	3	3	2	3	3	3	3	3	2		
CO4	3	3	2	3	3	3	3	3	3	3	3	2		
CO5	3	3	2	3	3	3	3	3	3	3	3	2		
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10		
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2		
			2	04		N. 1		Τ						

3 – Strong, 2- Medium, 1- Low

SEMESTER III / IV

SKILL ENHANCEMENT COURSE SEC-III: FITNESS FOR WELLBEING

Course Code	L	Т	Р	S	Credits	Total Hours	Marks		
							CIA	External	Total
UG23CSE1	1	-	1	-	2	30	25	75	100

Pre-requisites: Basic understanding of health and wellness concepts

Learning Objectives

- 1. To understand the interconnectedness of physical, mental, and social aspects of wellbeing, and recognize the importance of physical fitness in achieving holistic health.
- 2. To develop proficiency in mindfulness techniques, yoga practices, nutritional awareness, and personal hygiene practices to promote overall wellness and healthy lifestyle.

Course Outcomes

On the	successful completion of the course, student will be able to: $~~ \swarrow ~~ \bigtriangledown$						
1 know physical, mental, and social aspects of health							
2	understand holistic health and the role of physical fitness.	K2					
3	apply mindfulness and yoga for stress management and mental clarity.	K3					
4	implement proper personal hygiene practices for cleanliness and disease prevention.	K3					
5	evaluate and implement right nutritional choices.	K5					

K1-Remember; K2-Understand; K3-Apply; K5-Evaluate

Unit	Contents	No. of
		Hours
	Understanding Health and Physical Fitness	6
	Health – definition- holistic concept of well-being encompassing physical,	
Ι	mental, and social aspects.	
	Physical fitness and its components- muscular strength- flexibility, and body composition.	
	Benefits of Physical Activity- its impact on health and well-being.	
	Techniques of Mindfulness	6
II	Mind – Mental frequency, analysis of thought, eradication of worries	
	Breathing Exercises – types and its importance	
	Mindfulness -pain management - techniques for practicing mindfulness -	
	mindfulness and daily physical activities.	
	Foundations of Fitness	6
III	Stretching techniques to improve flexibility.	
	Yoga-Definition, yoga poses (asanas) for beginners, Sun Salutations (Surya	
	Namaskar), Yoga Nidra – benefits of yoga nidra.	
	Nutrition and Wellness	6
IV	Role of nutrition in fitness - macronutrients, micronutrients - mindful eating	
	practices, balanced diet - consequences of overeating. Components of healthy	
	food. Food ethics.	
	Personal Hygiene Practices	6
V	Handwashing- techniques, timing, and importance, oral hygiene- brushing,	
	flossing, and dental care, bathing and showering- proper techniques and	
	frequency, hair care- washing, grooming, and maintaining cleanliness,	
	maintaining personal hygiene, dangers of excessive cosmetic use.	
	Total	30

Self-study

Balance diet and basic excercises

Textbook

Bojaxa A. Rosy and Virgin Nithya Veena. V. 2024. *Fitness for Wellbeing*. **Reference Books**

- 1. Arul Raja Selvan S. R, 2022. Yogasanam and Health Science. Self publisher.
- 2. Vision for Wisdom. 2016. *Value Education*. The World Community Service Centre Vethathiri Publications.
- 3. WCSC Vision for Wisdom. 2016. *Paper 1: Yoga and Empowerment*. Vazhga Valamudan Offset Printers Pvt Ltd 29, Nachiappa St, Erode.
- 4. Lachlan Sleigh. 2023. *Stronger Together the Family's Guide to Fitness and Wellbeing*. Self Publisher.
- 5. William P. Morgan, Stephen E. Goldston. 2013. *Exercise And Mental Health*. Taylor & Francis.

Web Resources

- 1. https://www.google.co.in/books/edition/Psychology_of_Health_and_Fitness/11YOAwAA BAJ?hl=en&gbpv=1&dq=fitness+for+wellbeing&printsec=frontcover
- 2. https://www.google.co.in/books/edition/The_Little_Book_of_Active_Wellbeing/aA6SzgE ACAAJ?hl=en
- 3. https://www.google.co.in/books/edition/Physical_Activity_and_Mental_Health/yu96DwA AQBAJ?hl=en&gbpv=1&dq=fitness+for+wellbeing&printsec=frontcover
- 4. https://www.google.co.in/books/edition/The_Complete_Manual_of_Fitness_and_Well/pL PAXPLIMv0C?hl=en&gbpv=1&bsq=fitness+for+wellbeing&dq=fitness+for+wellbeing& printsec=frontcover
- 5. https://www.google.co.in/books/edition/The_Wellness_Code/4QGZtwAACAAJ?hl=en

SEMESTER IV ENVIRONMENTAL STUDIES

					LINIKO		JIUDIES			
Course	т	т	р	G	Credita	Inst.	Total		Marks	
Code	L	1	r	3	Credits	Hours	Hours	CIA	External	Total
UG234EV1	2	-	-	-	2	2	30	25	75	100

Pre-requisite: Interest to learn about nature and surrounding.

Learning Objectives

- 1.To know the different types of pollutions, causes and effects
- 2.To understand the importance of ecosystem, resources and waste management

Course Outcomes

On the successful completion of the course, students will be able to:						
1.	know the different kinds of resources, pollution and ecosystems	K1				
2.	understand the biodiversity and its constituents	K2				
3.	use the methods to control pollution and, to conserve the resources and ecosystem	K3				
4.	analyse the factors behind pollution, global warming and health effects for sustainable development	K4				
5.	evaluate various water, disaster and waste management systems	K5				

Units	Contents	No. of Hours
I	Nature of Environmental Studies Multidisciplinary nature of environmental studies- scope of environmental studies - environmental ethics-importance- types- natural resources - renewable and non-renewable resources – forest, land, water and energy resources.	6
п	Biodiversity and its Conservation Definition: genetic, species of biodiversity - biodiversity hot-spots in India - endangered and endemic species of India – Red Data Book - In-situ and Ex- situ conservation of biodiversity. Ecosystem- types - structure and function - food chain - food web- ecological pyramids- forest and pond ecosystems.	6
III	Environmental Pollution Pollution - causes, types and control measures of air, water, soil and noise pollution. Role of an individual in prevention of pollution. Solid waste management: Causes, effects and control measures of urban and industrial wastes. Disaster management– cyclone, flood, drought and earthquake.	6
IV	Environmental Management and Sustainable Development From unsustainable to sustainable development -Environmental Law and Policy – Objectives; The Water and Air Acts-The Environment Protection Act -Environmental Auditing-Environmental Impact Assessment-Life Cycle Assessment- Human Health Risk Assessment, Water conservation, rain water harvesting, watershed management.	6
V	 Social Issues and the Environment Population explosion-impact of population growth on environment and social environment. Women and Child Welfare, Role of information technology in environment and human health. Consumerism and waste products. Climate change - global warming, acid rain and ozone layer depletion. Field work: Address environmental concerns in the campus (or) Document environmental assets- river / forest / grassland / hill / mountain in 	6

the locality (or) Study a local polluted site-urban / rural / industrial / agricultural area.	
Total	30

Self-study Pollutants, Ecosystems and Resources

Textbook

Punitha A and Gladis Latha R, 2024. Fundamentals of Environmental Science. **Reference Books**

- 1. Agarwal, K.C., 2001. Environmental Biology, Nidi Publishers. Ltd. Bikaner.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Ltd.
- 3. Gorhani, E & Hepworth, M.T. 2001. *Environmental Encyclopedia*, Jaico Publ. House, Mumbai.
- 4. De A.K., 2018. Environmental Chemistry, Wiley Eastern Ltd.
- 5. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies Oxford Univ. Press.

Web Resources

1.https://www.sciencenews.org/topic/environment

- 2.https://news.mongabay.com/2024/05/
- 3. https://www.sciencedaily.com/news/earth_climate/environmental_issues/
- 4.https://wildlife.org/rising-oryx-numbers-may-distress-new-mexico-ecosystem/
- 5. https://phys.org/news/2024-02-global-wild-megafauna-ecosystem-properties.html

SEMESTER III & IV LIFE SKILL TRAINING II: CATECHISM

Course Code	т	т	р	S	Credits	Inst.	Total	Marks			
Course Code		I	r			Hours	Hours	CIA	External	Total	
UG234LC1	1	-	•	-	1	1	15	50	50	100	

Learning Objectives:

- 1. To develop human values through value education
- 2. To understand the importance of personal development to lead a moral life

Course Outcomes

On the successful completion of the course, student will be able to:						
1	know and understand the aim and importance of value education	K1,K2				
2	get rid of inferiority complex and act confidently in the society	K3				
3	live lovingly by facing loneliness and make decisions on their own	K3				
4	develop human dignity and able to stand bravely in adversity	K6				
5	learn unity in diversity and grow in a life of grace	K6				

K1 - Remember K2-Understand; K3-Apply; K6- Create

Units	Contents	No. of					
		Hours					
	Face Loneliness: Loneliness – Causes for Loneliness – Loneliness in Jesus	3					
Ι	Christ Life – Ways to Overcome Loneliness – Need and Importance						
	Bible Reference: Matthew: 6:5-6						
	Inferiority Complex: Inferiority Complex - Types - Ways to Get Rid of						
II	Inferiority Complex – Words of Eric Menthol – Balanced Emotion – Jesus and	3					
11	his Disciples.	5					
	Bible Reference: Luke 8:43-48						
	Decision Making: Importance of Decision Making – Different Steps – Search –						
	Think – Pray – Decide- Jesus and his Decisions						
Ш	Bible Reference: Mathew 7:7-8	3					
111	Independent: Freedom from Control – Different Types of Freedom - Jesus the						
	Liberator						
	Bible Reference: Mark 10:46-52						
	Human Dignity: Basic Needs – Factors that Degrade Human Dignity – How to						
	Develop Human Dignity.						
IV	Bible Reference: Luke 6:20-26	3					
1 V	Stand Bravely in Adversity: Views of Abraham Maslow – Jesus and his	5					
	Adversity.						
	Bible Reference: Luke 22:43						
Ċ	Unity in Diversity: Need for Unity – The Second Vatican Council on the						
	Mission of Christian Unity.						
V	Bible Reference: I Corinthians 1:10	3					
•	To Grow in a Life of Grace: Graceful Life – View of Holy Bible – Moses –						
	Amos – Paul – Graceful Life of Jesus						
	Bible Reference: Amos 5:4						
	TOTAL	15					

Textbooks

Valvukku Valikattuvom, Christian Life Committee, Kottar Diocese The Holy Bible

SEMESTER III & IV LIFE SKILL TRAINING II: MORAL

Course Code		т	L	т	р	C	Credita	Inst Hound	Total		Marks	
Course	ourse Code	I		P	D	Creans	Inst. nours	Hours	CIA	External	Total	
UG234	4LM1	1	-	-	-	1	1	15	50	50	100	

Learning Objectives:

- 1. To cultivate human values through value education
- 2. To comprehend the importance of humane and morals to lead ethical and moral life.

Course Outcome

On	On the successful completion of the course, student will be able to:						
1	know the significance of life	K1					
2	understand the importance of self-care	K2					
3	realise the duty of youngsters in the society and live up to it	K3					
4	analyse how to achieve success in profession	K4					
5	develop mystical values by inculcating good thoughts	K5					

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 – Evaluate

Unit	Contents	No. of Hours
Ι	Edu Care: IntroductionPersonal Care-Temple of Mind-Emotional stability- Inner views- Internal and external Beauty- Life is a Celebration	3
II	Self-care: Self- discipline- Selfishness in doing good things- Adolescence stage- What am I? - Self-esteem- Self-Confidence- Respect for womanhood	3
III	Profession based Values: Time Management-Continuous effort- What next? –Present moment is yours, Hard work and Smart Work-Broad view- destruct your failures	3
IV	Mystical Values: Thoughts- Positive and negative thoughts- Origin of negative thoughts-Moralisation of needs- Elimination of obstacles	3
V	Society and you: Knowing Humanity-Thankfulness- love and happiness- Honesty- Heroism -Youth is gift of God-Youngsters in politics and social media utilization.	3
	TOTAL	15

Text Book

"Munaetrathin Mugavari", G. Chandran, Vaigarai Publisher.

SEMESTER IV/ VI

SELF LEARNING COURSE: PUBLIC SERVICE EXAMINATION: PHYSICS-II

Course Code		т	р	G	Credita	Inst.	Total	Marks			
Course Code	L	I	P	ð	Credits	Hours	Hours	CIA	External	Total	
PU234SL1/ PU236SL1	•	-	-	-	1	-	-	25	75	100	

Pre-requisite:

Knowledge based on Quantum Mechanics, thermodynamics, atomic, molecular and nuclear physics.

Learning Objectives:

- 1. To provide a structured approach to understand both electromagnetic waves and quantum mechanics, covering fundamental concepts, mathematical frameworks, experimental evidence, and real-world applications.
- 2. To equip students with the knowledge, skills and abilities necessary to understand, analyze and design electronic systems based on solid-state devices, fostering their intellectual development.

Course Outcomes

1.remember the principles of electromagnetic theory, including Maxwell's equations and their applications.K12.understand the key principles of quantum mechanics, including quantization, superposition, and wave-particle duality.K23.apply thermodynamic principles for solving problems related to energy, heat transfer, and the behavior of thermodynamic systems.K34.analyse atomic structure, quantum mechanical models, and atomic spectra.K45.voltage-current relationships, small-signal behavior, and determine the frequency responseK5	Ont	On the successful completion of the course, students will be able to:					
 2. superposition, and wave-particle duality. apply thermodynamic principles for solving problems related to energy, heat transfer, and the behavior of thermodynamic systems. 4. analyse atomic structure, quantum mechanical models, and atomic spectra. K4 evaluate the characteristics and operation of semiconductor devices, including voltage-current relationships, small-signal behavior, and determine the K5 	1.		K1				
5. transfer, and the behavior of thermodynamic systems. K3 4. analyse atomic structure, quantum mechanical models, and atomic spectra. K4 evaluate the characteristics and operation of semiconductor devices, including K5 5. voltage-current relationships, small-signal behavior, and determine the K5	2.		K2				
 evaluate the characteristics and operation of semiconductor devices, including voltage-current relationships, small-signal behavior, and determine the K5 	3.		К3				
5. voltage-current relationships, small-signal behavior, and determine the K5	4.	analyse atomic structure, quantum mechanical models, and atomic spectra.	K4				
	5.		К5				

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate

Units	Contents
I	ELECTROMAGNETIC WAVES AND BLACKBODY RADIATION Displacement current and Maxwell's equations- Wave equations in vacuum, Pointing theorem -Electromagnetic field tensor, covariance of Maxwell's equations- Wave equations in isotropic dielectrics, reflection and refraction at the boundary of two dielectrics- Fresnel's relations- Total internal reflection; Normal and anomalous dispersion-Rayleigh scattering; Black body radiation and Planck's radiation law, Stefan - Boltzmann law, Wien's displacement law and Rayleigh- Jeans' law.
II	QUANTUM MECHANICS Wave-particle duality- Schrodinger equation and expectation values; Uncertainty principle- Solutions of the one-dimensional Schrodinger equation for a free particle (Gaussian wave-packet), particle in a box, particle in a finite well, linear harmonic oscillator- Reflection and transmission by a step potential and by a rectangular barrier- Particle in a three-dimensional box, density of states, free electron theory of metals- Angular momentum- Hydrogen atom -Spin half particles, properties of Pauli spin matrices.
III	THERMODYNAMICS Laws of thermodynamics, reversible and irreversible processes, entropy-

Isothermal, adiabatic, isobaric, isochoric processes and entropy changes- Otto and Diesel engines- Gibbs' phase rule and chemical potential- Vander Waals equation of state of a real gas, critical constants- Maxwell-Boltzmann distribution of molecular velocities, transport phenomena, equipartition, and virial theorems-Dulong-Petit, Einstein, and Debye's theories of specific heat of solids- Maxwell relations and applications; Clausius- Clapeyron equation. **ATOMIC AND MOLECULAR PHYSICS** Stern-Gerlach experiment, electron spin, fine structure of hydrogen atom; L-S coupling, J-J coupling- Spectroscopic notation of atomic states- Zeeman effect: Frank Condon principle and applications- Elementary theory of rotational, IV vibrational and electronic spectra of diatomic molecules- Raman effect and molecular structure- Laser Raman spectroscopy; Importance of neutral hydrogen atom, molecular hydrogen and molecular hydrogen ion in astronomy-Fluorescence and Phosphorescence- Elementary theory and applications of NMR. SOLID STATE PHYSICS, DEVICES AND ELECTRONICS Crystalline and amorphous structure of matter- Different crystal systems, space groups- Methods of determination of crystal structure- X-ray diffraction, scanning, and transmission electron microcopies; Band theory of solids conductors, insulators and semiconductors- Thermal properties of solids, specific heat, Debye theory- Magnetism: para and ferromagnetism; Elements of v superconductivity, Meissner effect, Josephson junctions, and applications-Elementary ideas about high-temperature superconductivity. Intrinsic and extrinsic semiconductors; p-n-p and n-p-n transistors; Amplifiers and oscillators-Op-amps- Digital electronics-Boolean identities, DeMorgan's laws, logic gates, and truth tables; Simple logic circuits- Thermostats, solar cells- Fundamentals of microprocessors and digital computers.

Textbooks

- 1. Murugesan S., 2014. Modern Physics, S. Chand Publishing, New Delhi, India.
- 2. Nayyar N K, 2009. Unique Quintessence of Physics (For M.Sc. Entrance Examinations (All Universities) & amp; other Competitive Examinations) Unique Publishers, New Delhi.
- 3. Arthur Beiser, 2006. Concepts of Modern Physics. Tata Mc Graw Hill ,India.

Reference Books

- 1. Aruldhas, G. 2005. *Quantum Mechanics*. Prentice-Hall of India, New Delhi.
- 2. Donald. P. Leach, Albert Paul Malvino, 2002. *Digital Principles and Applications*. (5th Edition), Tata, Mc Graw Hill publishing company Ltd., New Delhi.
- 3. Aruldhas, G., Rajagopal, R. 2005. *Modern Physics*. Prentice Hall of India Pvt Limited, India.
- 4. Halliday D, Resnick R, Walker J, 2001. *Fundamentals of Physics*, (6th Edition), Willey, New York.
- 5. Jenkins A, Francis, White. 2011. *Fundamentals of Optics*, (4th Edition), McGraw Hill Inc., New Delhi.

Web Resources

- 1. https://science.nasa.gov/ems/
- 2. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472
- 3. https://science.nasa.gov/ems/

- 4. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472
- 5. https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

		PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	2	3	3	3	3	3	2
CO2	3	3	2	3	3	3	3	3	3	3	3	2
CO3	3	3	2	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	3	3	3	3	3	3	3	2
CO5	3	3	2	3	3	3	3	3	3	3	3	2
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2

3 – Strong, 2- Medium, 1- Low